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a b s t r a c t

Northern quahogs, Mercenaria mercenaria (L.), frequently are infected with the parasite Quahog Parasite
Unknown (QPX, Labyrintohomorpha, Thraustochytriales), which can cause morbidity and mortality of the
quahogs. Possible interactions between this parasitic disease and exposure to the harmful dinoflagellate
Prorocentrum minimum in M. mercenaria were studied experimentally. Quahogs from Massachusetts with
variable intensity of QPX infection were exposed, under controlled laboratory conditions, to cultured P.
minimum added to the natural plankton at a cell density equivalent to a natural bloom. After 5 days of
exposure, individual clams were diagnosed histologically to assess prevalence and intensity of parasitic
infection, as well as other pathological conditions. Further, cellular defense status of clams was evaluated
by analyzing hemocyte parameters (morphological and functional) using flow-cytometry. Exposure of
quahogs to P. minimum resulted in: a lower percentage of phagocytic hemocytes, higher production of
reactive oxygen species (ROS), larger hemocyte size, more-numerous hemocytic aggregates, and
increased numbers of hemocytes in gills accompanied by vacuolation and hyperplasia of the water-tubu-
lar epithelial cells of the gills. Quahogs had a low prevalence of QPX; by chance, the parasite was present
only in quahogs exposed to P. minimum. Thus, the effect of QPX alone on the hemocyte parameters of
quahogs could not be assessed in this experiment, but it was possible to assess different responses of
infected versus non-infected quahogs to P. minimum. QPX-infected quahogs exposed to P. minimum had
repressed percentage of phagocytic hemocytes, consistent with immuno-modulating effect of P. minimum
upon several molluscan species, as well as smaller hemocytes and increased hemocyte infiltration
throughout the soft tissues. This experiment demonstrates the importance of considering interactive
effects of different factors on the immunology and histopathology of bivalve shellfish, and highlights
the importance of considering the presence of parasites when bivalves are subjected to harmful-algal
blooms.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Northern quahogs, Mercenaria mercenaria (L.), from a portion of
the east coast of North America (Virginia to Prince Edward Island)
have demonstrated variable infection with the protozoan parasite,
Quahog Parasite Unknown, QPX, Labyrintohomorpha, Thraustro-
chytriales (Smolowitz and Leavitt, 1997), in some locations result-
ing in variable and sometimes high mortalities (Smolowitz et al.,

1998; Ford, 2001; Ford et al., 2002; Dahl et al., 2008). Pathogenesis
of this disease begins with appearance of parasite cells in mantle
and gill tissues, which induces hemocyte migration into the area
of infection to isolate and destroy the QPX cells (Smolowitz et al.,
1998). Progression of the disease may include large, focal lesions
or multifocal, granulomatous, inflammatory responses induced
by the parasites, which increase with the severity of infection
(Smolowitz et al., 1998). Eventually, necrosis and bacterial/fungal
decomposition of infected tissues occurs, implying that immune
functions may become impaired by QPX infection. The prevalence
of the parasite in quahogs correlates with the mortality rate of the
animals, and also is related to the origin of the quahog broodstock,
i.e., specific genotypes appear to have higher susceptibility to the
parasite (Ragone Calvo et al., 2007).
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Studies of how QPX disease modifies the morphology and
functions of hemocytes, circulating cells involved in defense, in
quahogs have already been performed (Hégaret et al., 2008a; Per-
rigault and Allam, 2009). Another thraustochytrid protist, phylo-
genetically related to QPX but without the envelope of secreted
mucoid material present around QPX, isolated from M. mercena-
ria, C9G, has been demonstrated to activate the hemocyte phago-
cytic response, but to have no effect on production of ROS in
quahog hemocytes (Anderson et al., 2003a). This selective re-
sponse suggests that hemocytes were able to kill the parasite,
but without involving oxygen-dependant mechanisms (Anderson
et al., 2003a). Other parasites also have demonstrated effects on
bivalve hemocytes (Anderson et al., 1995; Allam et al., 2001;
Cochennec-Laureau et al., 2003; Goedken et al., 2005a, b). Thus,
the presence of a parasite can be expected to affect the immune
status of a bivalve, modifying responses to other environmental
changes such as harmful-algal blooms (HABs) (Hégaret et al.,
2007a; da Silva et al., 2008). Harvell et al. (1999) listed HABs as
one of the growing concerns that may enhance the impact of dis-
eases and parasites on marine organisms and the food webs sup-
porting them.

Harmful-algal blooms can have diverse, deleterious effects on
bivalve species (reviewed in Shumway (1990) and Landsberg
(2002)), resulting in morbidity to mortality. Several studies have
highlighted effects of harmful-algal species upon bivalve hemo-
cytes (Hégaret and Wikfors, 2005a, b; Hégaret et al., 2007a, b; da
Silva et al., 2008; Ford et al., 2008; Galimany et al., 2008a, b). Spe-
cifically, the dinoflagellate Prorocentrum minimum has been shown
to cause morphological and functional changes in hemocytes of
several bivalve species (Hégaret and Wikfors, 2005a, b; Galimany
et al., 2008a; Hégaret et al., 2008b, 2009). This dinoflagellate is
present throughout the world (Heil et al., 2005) and has been re-
ported to affect filtration, growth, survival, or organ and tissue
development of northern quahogs, bay scallops and juvenile east-
ern oysters (Leibovitz et al., 1984; Shumway et al., 1985; Lucken-
bach et al., 1993; Wikfors and Smolowitz, 1993, 1995, reviewed
in Wikfors (2005)). Blooms of P. minimum have been recorded on
the East Coast of the United States (Freudenthal and Jijina, 1985),
indicating that this phytoplankter is sympatric with QPX-infected
quahogs. Possible combined effects of P. minimum and QPX on qua-
hogs, however, have never been assessed.

Objectives of the present study were to determine (1) if in vivo
exposure of northern quahogs, M. mercenaria, to P. minimum would
impart immunological or pathological changes, (2) whether or not
the presence of the parasite QPX could affect any responses ob-
served following a harmful-algal exposure, and thus assessing if
there could be any combined effect of these both stresses.

2. Materials and methods

2.1. Experimental clams

Northern quahogs,M. mercenaria (45–55 mm shell length), were
collected on August 10th 2006 from a low-intertidal sand flat near
Scudder’s Lane in Barnstable, MA, a location where the prevalence
of QPX varies from 30% to 70% in 2 year-old quahogs (Smolowitz,
unpubl. obs.). Quahogs were acclimated in flow-through seawater
tanks for one week before the experiment in unfiltered seawater
containing natural plankton assemblages pumped from Vineyard
Sound, just off shore of Woods Hole, MA. The natural plankton
assemblage was examined micro scopically to ensure the absence
of any natural, harmful-algal bloom. The dinoflagellate P. minimum
is not known to occur at bloom levels in this area. All the water
coming out of the flow through system was collected, treated with
sodium hypochlorite and discarded into the fresh water sewer sys-

tem to prevent the potential spreading of the disease and the
harmful-alga.

2.2. Algal cultures

The P. minimum (Pavillard) Schiller strain JA-98-01 (isolated
from the Choptank River, Chesapeake Bay, Maryland, USA), was ob-
tained from the Milford Microalgal Culture Collection. As inconsis-
tent responses of bivalves to P. minimum have been observed in
nature and in experiments (Wikfors, 2005), the strain JA-98-01
was chosen for its toxicity to juvenile bay scallops, Argopecten irra-
dians, used as a bioassay to test algal toxicity; mortality of juvenile
bay scallops occurs after 24 h exposure to stationary-phase cells,
but log-phase cells are less toxic (Hégaret and Wikfors, 2005a;
Galimany et al., 2008a). Cultures of P. minimum were grown in
EDL7 medium, a modified version of the enriched-seawater E-med-
ium (Ukeles, 1973) that contains L-1 trace metals, double the EDTA
of the standard E formulation, KNO3 rather than NaNO3, and soil
extract. The microalga was cultured in 20 L glass carboy assemblies
using aseptic technique (Ukeles, 1973). Cultures were maintained
at 20 �C with 24 h light, and harvested semi-continuously to main-
tain consistency in culture quality over the course of the study.
Cells were harvested in stationary phase, usually approaching a
concentration of 1–5 � 105 cells mL�1. Algal cell densities were
determined by hemocytometer counts under a light microscope.

2.3. Experimental design

Sixty quahogs were distributed randomly into twelve 1 L basins,
i.e. five clams per basin. Six replicates of two different treatments
were done in this experiment:

(1) Clams fed only the natural plankton, a community of 2–
5 lm cyanobacteria and non-motile eukaryotic cells at
approximately 104 cells ml�1.

(2) Clams fed P. minimum at 2 � 104 cells ml�1, added to the nat-
ural plankton.

Each replicate group of clams was fed continuously 5 mL min�1

for 5 days using a self-contained, integrated apparatus for exposing
aquatic organisms to different water sources (Smith et al., 2006).
Briefly, this integrated apparatus contains 12 flow meters, feeding
twelve 1 L basins, which are themselves contained in a much larger
80 L basin. The overflow of this basin is collected by one-single
drain to be treated before disposal. The twelve 1 L basins con-
nected to individual flow meters can each receive a different algal
mix. In this experiment, the two algal mixes were fed to the clams
using gravity; the flow was controlled using 12 individual float-ball
flow meters (Cole-Parmer). The algal suspension was provided to
each basin, six receiving the natural plankton, and the other six
the natural plankton to which P. minimum had been added. As
the algal mixes were continuously added to the basins, they over-
flowed into the large basin and treated with Chlorox. Previous
experiments showed that effects of P. minimum on eastern oysters
hemocytes could be observed after 5 days of exposure (Hégaret
and Wikfors, 2005a). Thus, after 5 days of exposure, the clams were
removed from the apparatus; hemocytes were analyzed using
flow-cytometric methods, and presence of Quahog Parasite Un-
known (QPX) and other pathological conditions were assessed by
histology.

2.4. Analysis of hemocyte parameters

Hemolymph was withdrawn with a needle and 1 mL syringe
from the adductor muscle of each quahog, filtered through
75 lm mesh, and stored temporarily before use in an Eppendorf
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microcentrifuge tube held on ice. Hemocyte analyses were con-
ducted on hemolymph collected from individual bivalves.

Hemato-immunological parameters measured were: the con-
centration of circulating hemocytes (=total hemocyte counts �
THC, cells ml�1) as well as hemocyte characterization, in terms of
size using the FSC detector and granularity or internal complexity
using the SSC detector, according to Hégaret et al. (2003a). The im-
mune functions measured were:

(a) Hemocyte mortality, as percentage of dead hemocytes, using
Propidium Iodide (Sigma, final concentration 20 lg ml�1)
according to Hégaret et al. (2003b);

(b) Phagocytosis of fluorescent microbeads (Fluoresbrite YG
Microspheres, 2.00 lm, Polysciences) by hemocytes, as per-
centage of highly-phagocytic (>2 beads) hemocytes accord-
ing to Hégaret et al. (2003b) and by the number of beads
phagocytized by each hemocyte (Gmean(>2 beads)/Gmean(1 bead));

(c) Hemocyte production of reactive oxygen species (ROS) with
potential to kill non-self, engulfed particles was assessed
using 2 V,7 V-dichlorofluorescein diacetate (DCFH-DA,
Sigma) described in Buggé et al. (2007).

(d) Adhesion of the hemocytes was measured by assessing the
proportion of hemocytes that detach from the surface of
experimental chambers after incubation with potential tox-
ins as previously described for clams by Choquet et al.
(2003). The assay was conducted in 24-well plates.

(e) Apoptosis of hemocytes was measured according to Goed-
ken et al. (2005b), using Propidium Iodide (Sigma) and
Annexin V (Fluoroprobes).

A FACScan (BD Biosciences, San Jose, CA) flow-cytometer was
used for all hemocyte analyses.

2.5. Histopathological observations

Clams were examined macro- and micro-scopically to confirm
the presence of the parasite and to detect other tissue damage.
Quahogs were shucked and examined grossly for any abnormal
swellings or nodules in the mantle, which are commonly found
in QPX-infected, sub-market sized, aquacultured clams in Massa-
chusetts, USA. Tissues from each quahog were prepared for histo-
logical sectioning by excising two diagonally-slanted cross-
sections of tissue through the clam, which included all organs
and foot. Additionally, a small section of mantle adjacent to the si-
phon (where nodules are often found), and any nodules/swelling in
the mantle were sampled. Tissues were fixed in 10% formalin in
seawater, processed in paraffin (in one cassette), sectioned at
6 lm, and stained with Harris’ hematoxylin and eosin as per stan-
dard methods (Humason, 1979; Howard et al., 2004).

The slides were read blind, and histopathological features, such
as inflammation of the organs, tubular-epithelium hyperplasia,
water-tubule vacuolation, and hemocyte aggregates, were assessed
under a light microscope and categorized for further analyses as 0
when the histopathological lesion was absent and 1 when present.

2.6. Detection and quantification of QPX infection in M. mercenaria

Tissue from each clam was evaluated and scored for presence
and intensity of QPX parasite infections, the amount of associated
hemocytic infiltration, and the amount of mucus production by the
QPX organisms, visible as small, clear halos around QPX cells, indi-
cating the presence of mucus before tissue processing (Smolowitz
et al., 1998). The presence and intensity of QPX was scored accord-
ing to Cheville (1983) as focal (localized area within a tissue or an
organ), multifocal (several foci within a tissue or an organ), focally
extensive (extension of the focus to involve a considerably-larger

area within a tissue or an organ), and diffuse (distributed through-
out all tissues examined). QPX presence and intensity were as-
sessed for each of the following organs within an individual
section: mantle, gill, dorsal tissues (heart, kidney, pericardium,
and dorsal intestine), ventral tissues (ventral intestine, foot, gan-
glion, and sinus), and visceral mass. These evaluation methods
are modifications of those developed by Ragone Calvo et al. (2007).

2.7. Statistical analysis

Results were analyzed statistically using t-tests and ANOVAs to
assess effects of experimental treatments upon the individual re-
sponse variables. Chi-square tests were also performed to assess
the effect of the independent variables (algal exposure and parasite
infection) on the histological features of the clams. We used Stat-
graphics Plus statistical software (Manugistics, Inc., Rockville,
MD, USA).

3. Results

Both groups of quahogs produced feces and pseudofeces during
the course of the experiment. The natural phytoplankton to which
P. minimum culture was added consisted of small (5 lm) Thalassi-
osira spp. and even smaller (1–2 lm) cyanobacteria. Quahogs ex-
posed to P. minimum produced more biodeposits than clams from
the control diet. The presence of intact and partially-digested cells
of P. minimum in the biodeposits also clearly indicated that qua-
hogs filtered and consumed the harmful-alga.

3.1. Presence of QPX in the tissues of quahogs

In the experiment, QPX was detected in 8 of the 60 quahogs.
Only one QPX-infected clam was in the group exposed to natural
plankton; this clam showed a multifocal QPX infection located in
the mantle and at the base of the siphon, with a very large number
of QPX cells. Seven QPX-infected clams were in the group exposed
to P. minimum. QPX infection was most often observed (5 of 7
clams) in the mantle at the base of the siphon, where multifocal
and focally extensive QPX infection associated with intense hemo-
cytic infiltration was observed. Most QPX cells observed in these
infiltrated areas of the mantle were dead before processing and
were observed as dark-pink stippling within light-pink, round
cells. These round cells showed indistinct or poorly-distinguished
cell walls surrounded by hemocytes or within the cytoplasm of
hemocytes, as described in Ragone Calvo et al. (1998). Two clams
(of 7) showed QPX infections accompanied by hemocytic infiltra-
tion within the gills and connective tissues around the digestive tu-
bules. Such infections in the connective tissues surrounding the
digestive tubules and in sinusoids of the gills, in addition to the
mantle, usually indicate an overall more-extensive infection of
the clam, as compared to infection in the mantle alone (Smolowitz
et al., 1998).

Microscopic observations did not show evidence of mucus pro-
duction by QPX in the tissues, except for one clam, which had
small, clear halos around QPX cells. This clam was the only individ-
ual in which QPX had infected the gonadal tubules.

3.2. Hemocyte analyses following exposure to P. minimum or natural
plankton (in non-infected clams)

The effects of P. minimum upon hemocyte parameters of the
clams were assessed, contrasting the non-infected quahogs ex-
posed to the natural plankton or to P. minimum added to the natu-
ral plankton (Table 1). Exposure of quahogs to P. minimum for
5 days caused increases in mean size of hemocytes and production
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of reactive oxygen species, as well as a decrease in the percentage
of phagocytic hemocytes (Table 1).

3.3. Effect of QPX infection in hemocyte responses of clams to an
exposure to P. minimum

A lack of infected animals fed the natural plankton prevented
assessment of any effect of QPX alone on the circulating hemo-
cytes. Conversely, 7 of the 8 infected quahogs were exposed to P.
minimum; thus, it was possible to assess the effects of QPX infec-
tion on the hemocyte responses of clams exposed to P. minimum.
Results indicated that hemocytes of quahogs exposed to P. mini-
mum were smaller in the QPX-infected quahogs than in those not
infected (Fig. 1A). The percentage of phagocytic hemocytes and
the number of beads phagocytized by each hemocyte in infected
clams exposed to P. minimum were also lower (Fig. 1B and C). Dif-
ferences in the percentage of phagocytic hemocytes and number of
beads phagocytized by each hemocyte could be observed between
the four groups of quahogs: exposed or not to P. minimum and in-
fected or not with QPX. Only one quahog exposed to the control
diet (natural plankton) was infected by QPX, which did not permit
inclusion of this variable in the statistical analysis. Consequently,
the one-way ANOVA calculated included only the three other treat-
ments: quahogs fed the natural plankton and infected with QPX,
quahogs fed P. minimum, infected with QPX, and quahogs fed P.
minimum, not infected with QPX. Results (Fig. 1B and C) indicate

a significant difference between the three treatments, with a de-
crease of the percentage of phagocytic hemocytes and the number
of beads phagocytized by each hemocyte in quahogs fed P. mini-
mum, which was even more pronounced in quahogs infected with
the parasite. Neither P. minimum, nor QPX affected the percentage
of apoptotic or dead (but not by apoptosis) hemocytes in circulat-
ing hemolymph, which, respectively, averaged 13% and 5%.

3.4. Histopathological analyses following exposure to P. minimum or
natural plankton (in non-infected clams)

Exposure of non-infected clams to P. minimum resulted in mild
to moderate hyperplasia (Table 2, Fig. 2, Chi-square, P < 0.01) and
vacuolation (Table 2, Fig. 2, Chi-square, P < 0.01) of the water-tubu-
lar epithelial cells of the gills (Table 2; Fig. 2). Hemocyte infiltration
and aggregates (granuloma/encapsulation) were observed only in
quahogs exposed to P. minimum (Table 2, Figs. 2 and 3, Chi-square,
P < 0.01) and were present in the connective tissues and sinuses of
different organs: kidney, gills, mantle, foot, heart, and pericardial
sac.

3.5. Histopathological effects of QPX infection in clams exposed to P.
minimum

Further, histological sections revealed that effects of QPX,
in quahogs exposed to P. minimum, included intense hemocytic

Table 1
Effects of harmful-algal exposure on quahog, Mercenaria mercenaria, immunological parameters after 5 days of exposure to two algal treatments: Prorocentrum minimum plus
natural plankton, or a control of natural plankton alone. (N = 51, including only the clams not infected with QPX: 29 fed the natural plankton and 22 fed Prorocentrum minimum; t-
test: significant differences �P < 0.05 and ��P < 0.01 as well as non significant (NS) differences are presented). AU: arbitrary units.

Hematological parameters P-value Natural phytoplankton Prorocentrum minimum + Natural phytoplankton

Mean (SE)

Hemocyte counts (AU, 30 s acquisition) NS 2269 (379) 2922 (435)
Size of hemocytes (AU) �� 421.1 (4.6) 444.0 (4.0)
Complexity of hemocytes (AU) NS 44.7 (1.1) 45.1 (1.3)
% Necrotic hemocytes NS 5.8 (0.7) 4.4 (0.6)
% of phagocytic hemocytes � 31.5 (1.7) 25.2 (2.4)
Number of beads phagocytized by hemocytes NS 5.71 (0.09) 5.53 (0.10)
Production of ROS (AU) � 118.8 (12.8) 181.5 (12.2)
% Apoptotic hemocytes NS 13.6 (1.4) 12.4 (1.1)
% Adhered hemocytes NS 85.4 (2.6) 86.1 (2.27)
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Fig. 1. Size (A) and percentage of highly phagocytic (B) and number of beads phagocytized by hemocyte (C) of hemocytes from quahogs, Mercenaria mercenaria, with or
without QPX infection, exposed for 5 days to a control diet of Natural Plankton or to Prorocentrum minimum added to the natural plankton (P. minimum). (N = 59, ANOVA
including only three groups: quahogs fed P. minimum infected (n = 7) or not (n = 23) with QPX, and quahogs fed the natural plankton and not infected (n = 29) with QPX;
letters indicate significant differences (P < 0.01) between the three groups. As only one quahog fed the natural plankton diet was infected with QPX, these data were not
included in the statistical analysis.) AU: arbitrary units.
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infiltration into the connective tissues of several organs including
mantle (Fig. 4) and gills; 100% of quahogs, both infected and ex-
posed to the harmful-alga, had hemocyte infiltration in the tissues,

which was only observed in 36% of the cases of un-infected qua-
hogs exposed to P. minimum (Chi-square, P < 0.01), indicating com-
bined effects of both stressors. In addition, quahogs exposed to P.
minimum and infected with QPX showed a mild increase in hemo-
cytes within the gills (Chi-square, P < 0.01).

4. Discussion

This experiment explored the combined effects of two potential
stressors, P. minimum, a HAB species, and a parasite (QPX), upon
hemocyte parameters, and histopathological condition of quahogs
(M. mercenaria).

Exposure to P. minimum caused an increase in mean size of
hemocytes, a decrease in the percentage of phagocytic hemocytes
and the number of beads phagocytized by each hemocyte, and
higher production of ROS by quahog hemocytes. Quahogs exposed
to P. minimum also showed presence of hemocytic infiltration and
formation of granulomas in various tissues. Similar hemocyte re-
sponses to P. minimum have been observed in other bivalves. Oys-
ters and scallops exposed to an artificial bloom of P. minimum had
higher mean percentages of dead hemocytes and production of
ROS, along with lower concentrations of circulating hemocytes
and repressed phagocytosis in the case of scallops (Hégaret and
Wikfors, 2005a). Manila clams, Ruditapes philippinarum, exposed
to P. minimum also contained a lower percentage of phagocytic
hemocytes (Hégaret et al., 2009). Thus, repression of hemocyte
phagocytosis (in number of beads phagocytized and percentage)
is a consistent, immuno-modulating effect of P. minimum upon
several molluscan species, including clams and scallops.

Histological observations indicated that clams exposed to P.
minimum had several pathological conditions attributable to the
harmful-alga. The gills of quahogs exposed to P. minimum had sig-
nificant water-tubular epithelial cell vacuolation that can lead to
rupture and necrosis of these cells. Gills of P. minimum-exposed
quahogs also often showed hyperplasia of the water-tubular epi-
thelium, resulting in regenerative cell proliferation by the remain-
ing epithelium and suggesting potential mild epithelium lysis.
Hemocyte aggregates (thrombi/clots/granuloma) were also noted
in the sinuses of the gills, kidney, pericardial sac, heart and foot.
Hemocyte infiltration and granuloma in the tissues have also been
observed in other bivalves, such as bay scallops A. irradians, Pacific
oysters Crassostrea gigas, blue mussels Mytilus edulis and Manila
clams R. philippinarum exposed to Prorocentrum spp. (Wikfors
and Smolowitz, 1993; Pearce et al., 2005; Galimany et al., 2008a;
Hégaret et al., 2009). Wikfors and Smolowitz (1993) also reported
degeneration of the digestive gland and presence of hemocyte
aggregates (granulomas) in several tissues of bay scallops exposed
to P. minimum. Indeed, as bivalve molluscs feed, hemocytes can
interact with harmful-alga, their toxins, or metabolites within
the digestive diverticula, but also in other tissues, such as gills or
mantle. Thus, observation of hemocytic infiltration or aggregation
in the intestines, gills, gonadal follicles, etc. of P. minimum-exposed
quahogs indicates that hemocytes probably reacted to the pres-
ence of the harmful-algae or its toxins throughout tissues.

Toxic effects of P. minimum have been demonstrated several
times with scallop bioassays (Hégaret and Wikfors, 2005a; Galima-
ny et al., 2008a), even though the toxic agent is not clearly identi-
fied at this time. The dinoflagellate P. minimum may produce some
toxic compound responsible for epithelial cell necrosis (Grzebyk
et al., 1997) generating hemocyte infiltration or aggregation to
accomplish tissue repair or to isolate the tissues from the algal
cells. The toxins produced by the entire P. minimum cells may also
have direct effects on the epithelium, damaging the tissues, which
could also explain the swelling of the water-tubular cells and
hemocyte inflammation and aggregation. These aggregates could

Table 2
Effects of harmful-algal, Prorocentrum minimum, exposure upon non-QPX-infected
quahog, Mercenaria mercenaria, histological parameters after 5 days of exposure
(N = 52, 29 exposed to the natural plankton and 23 exposed to Prorocentrum
minimum). The data were categorized as 0 or 1, according to the absence or presence
of the observed character; Chi-square tests were performed (NS: not significant;
�P < 0.05; ��P < 0.01).

Histological features P-value Number of individuals
showing histological
features

Natural plankton P. minimum

Inflammation of the organs NS 9 8
Tubular-epithelium hyperplasia �� 0 15
Water-tubule vacuolation �� 6 18
Hemocyte aggregates �� 0 8

Fig. 2. Hyperplasia (h) of water-tubular epithelium, with individual-cell vacuola-
tion (v) and hemocyte infiltration (i) in gills of quahogs Mercenaria mercenaria
exposed to Prorocentrum minimum.

Fig. 3. Hemocyte aggregation, or granuloma (arrow) in the kidney lumen of a
quahog, Mercenaria mercenaria, exposed to Prorocentrum minimum.
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reflect the response of encapsulation of the P. minimum cells by
hemocytes, as suggested by Galimany et al. (2008a). Galimany
and co-workers also suggested that the hemocyte responses of
blue mussels M. edulis to P. minimum appear to be similar to the re-
sponses to a parasite infection, such as Perkinsus sp. or QPX. Encap-
sulation of P. minimum cells associated with a decrease in
phagocytic capability was also observed in vitro when hemocytes
of quahogs were incubated with P. minimum cells (Hégaret et al.,
2008b). Moreover, no chlorophyll fluorescence was observed with-
in hemocytes exposed to P. minimum in vitro; whereas, fluores-
cence could be seen when hemocytes were incubated with other
algal species. These findings support the hypothesis of Galimany
et al. (2008a) that quahog hemocytes do not engulf P. minimum al-
gal cells, but rather isolate them by encapsulation, the same re-
sponse elicited by parasites in several bivalve species.

The number of circulating hemocytes remained the same in all
treatments, indicating that quahogs were able to overcome such
stresses and produced new hemocytes to replace those involved
in the response to the harmful-alga or the parasite. Similar obser-
vations were made by Galimany et al. (2008a) and Hégaret et al.
(2009) who reported that blue mussels, M. edulis, and Manila clams
R. philippinarum, exposed to P. minimum; despite intense hemocyte
infiltration into the tissues and diapedesis into the alimentary ca-
nal, maintained a constant hemocyte concentration in the circulat-
ing hemolymph. In both studies, a large amount of bacteria was
also observed in the intestine, surrounded by hemocytes, which
had undergone diapedesis. Conversely, bacterial multiplication in
intestine or alimentary canal of quahogs could not be seen in this
study. Previous work demonstrated the ability of quahogs M. merc-
enaria exposed to bacteria to clear them by rapidly sedimenting
them into feces or pseudofeces (Hartland and Timoney, 1979;
Timoney and Abston, 1984). Northern quahogs may have a better
antibacterial defense mechanism or may be better prepared to re-
act against an exposure to P. minimum.

Infection of quahogs with QPX was not well distributed in
experimental groups; only eight clams of 60 were infected by
QPX. Unfortunately, the infection by QPX of each individual clams
could not be assessed previous to the experiment, as the method of
determination for the presence of the parasite is lethal. By chance,
seven infected clams were in groups exposed to P. minimum. Thus,
we were able to observe how infection with QPX can modify the
response of quahogs to P. minimum, but not effects of QPX alone.
Results indicated that the mean size of hemocytes in QPX-infected
quahogs tended to decrease following exposure to P. minimum;
whereas, hemocytes of non-infected quahogs were larger when ex-
posed to P. minimum for 5 days. One hypothesis explaining the de-
crease in the size of hemocytes could be that new, smaller

hemocytes were produced in response to the increasing movement
of hemocytes into tissues infected with QPX, as observed by the
high increase of hemocytic infiltration surrounding the parasites.
QPX has been shown to induce hemocytic infiltrations in tissues
(Smolowitz and Leavitt, 1997; Smolowitz et al., 1998; Dove et al.,
2004; Ragone Calvo et al., 2007), which were indeed much more
intense in P. minimum-exposed quahogs infected with QPX, than
in the un-infected clams. Moreover, the presence of QPX is often
associated with phagocytic hemocytes (Ragone Calvo et al., 1998;
Smolowitz et al., 1998). It is not possible with flow-cytometry to
distinguish granular from agranular hemocytes in quahogs; how-
ever, we hypothesize that highly-phagocytic hemocytes, usually
more granular, would be directed from the open vascular system
towards the infected tissues. This hemocyte migration would be
consistent with, the reduction in size of the circulating hemocytes,
as well as in percentage of phagocytic hemocytes in the overall cir-
culating hemocyte population.

Mucoid secretion by QPX has been shown to represent a viru-
lence factor (Anderson et al., 2003b). In this study, only one QPX-
infected quahog showed presence of QPX in the gonadal tubules,
less often infected than other organs (MacCallum and McGladdery,
2000; Dove et al., 2004) and which represents a later and more-se-
vere stage of infection. The QPX parasites from this clam had halos,
indicating the production of mucus, which may be at the origin of
the heavier infection stage of this clam. This was confirmed by his-
tological observations showing more intense water-tubule vacuo-
lation, tubular-epithelium hyperplasia, and high hemocytic
infiltration in these tissues.

The present study shows that QPX disease in quahog clams can
modify the response of quahogs to environmental stressors, such
as harmful-algal blooms. These results are consistent with the find-
ings of Hégaret et al. (2007b), who demonstrated combined effects
of P. olseni and the harmful-alga Karenia selliformis on concentra-
tion of circulating hemocytes and hemocyte phagocytic activity
in Manila clams. Indeed, when quahogs were subjected to both
stressors, combined infection with QPX and exposure to the HAB,
hemocyte size decreased, indicating an increase in impact when
both stressors were combined. Similarly, non-infected quahogs ex-
posed to P. minimum had depressed phagocytosis, which was more
intense when the quahogs were infected, indicating another com-
bined effect of both types of stressors. These results also confirm
that repressed phagocytosis (in percentage and number of beads
phagocytized) could be used as evidence of physiologically-active
HAB effects upon bivalves, as it is already been applied in the case
of pollutants, such as heavy metals, hydrocarbons, pesticides, etc.
(Cheng and Sullivan, 1984; Alvarez and Friedl, 1992; Brousseau
et al., 2000; Hamoutene et al., 2004; Gagnaire et al., 2006).

Fig. 4. Quahog Parasite Unknown (QPX, arrow) surrounded by hemocyte infiltration in the mantle of a quahog, Mercenaria mercenaria exposed to Prorocentrum minimum. Fig
4B (scale = 25 lm) represents the black square visible in Fig. 4A (scale = 100 lm).
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5. Conclusion

The harmful dinoflagellate P. minimum had a low-grade but sig-
nificant toxic effect on the tissues of quahogs, causing vacuolation
and hyperplasia of the water-tubular epithelium of the gills as well
as hemocyte aggregates (granuloma/encapsulation) in the sinuses
of various organs. Exposure to P. minimum also modified quahog
circulating hemocytes, reducing the percentage of highly-phago-
cytic hemocytes, as well as the number of beads phagocytized by
each hemocyte, activating production of ROS, and slightly modify-
ing hemocyte morphology. This study also showed that an existing
QPX infection in clams can modify response of quahogs to HAB
exposure, indicating combined effects of these stressors upon the
immunology and histopathology of bivalve shellfish.
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