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Faking Giants: The Evolution of High
Prey Clearance Rates in Jellyfishes
José Luis Acuña,1* Ángel López-Urrutia,2 Sean Colin3

Jellyfishes have functionally replaced several overexploited commercial stocks of planktivorous
fishes. This is paradoxical, because they use a primitive prey capture mechanism requiring direct contact
with the prey, whereas fishes use more efficient visual detection. We have compiled published data
to show that, in spite of their primitive life-style, jellyfishes exhibit similar instantaneous prey clearance
and respiration rates as their fish competitors and similar potential for growth and reproduction.
To achieve this production, they have evolved large, water-laden bodies that increase prey contact rates.
Although larger bodies are less efficient for swimming, optimization analysis reveals that large
collectors are advantageous if they move through the water sufficiently slowly.

Several trophic systems have shifted from
being planktivorous fish-dominated to
jellyfish-dominated after overfishing (1–5),

hinting at a future “gelatinous” ocean reminiscent
of the early Ediacaran if fishing effort and other
anthropogenic stressors remain unchanged (6).
Indeed, growing evidence of dietary, spatial, and
temporal overlap among planktivorous fishes
and jellyfishes (7–9) points to some degree of
competition (10, 11). High fishing pressure on
fish would favor a shift toward the competitive-
ly inferior jellyfishes (11). Contrasting competi-
tive abilities between fishes and jellyfishes have
been attributed to feeding differences among visu-
al and tactile predators (12). Most economically
relevant fishes and trophically dominant jellyfishes
are cruising predators, which hunt while swim-
ming. Fishes have compact bodies and use their
eyes to detect prey. In contrast, swimming medu-
sae pulse their bells to create vortices that serve
as a feeding current and transport prey to their
tentacles and oral arms (Fig. 1). Compared with
fishes of the same length, jellyfishes exhibit lower
clearance rates, that is, volume of water cleared
of prey per unit time (12). However, jellyfishes
are watery animals, containing less than 1.5 kg
of carbon per cubic meter of body volume, as
opposed to 100 kg of C m−3 in organisms with a
normal carbon content (13). Thus body carbon,
rather than length, may be the relevant metric
when comparing physiological rates among or-
ganisms (14). Further, the competitive ability of
a predator depends not only on prey capture and
ingestion rates but on how efficiently the energy
obtained translates into body growth and popu-
lation buildup. This requires an analysis of the
energy balance, involving not only the feeding
benefits but also the respiratory losses. The dif-
ference between these two is the scope for growth,
which can be defined as

H = G – R = lCPe – R

where G is the energy input from food assimi-
lation, R is the total respiration rate, l is the pro-
portion of day spent feeding, C is the clearance
rate, P is the prey density, and e is the digestive
assimilation efficiency. The scope for growth in-
dicates the potential for growth and is related to
the rate of biomass and population buildup; thus,
it is an indicator of competitive performance.

We have compiled published data on clear-
ance (table S1) and respiration rates (table S2)
of fishes, jellyfishes, and their crustacean prey
to compare their bioenergetic performance in
marine food webs (15) (Fig. 2). In a log-log plot,
the allometric regressions of clearance rate versus
body carbon for jellyfishes (n = 364) and for fishes
(n = 243) were nearly identical (Fig. 2A), with
similar slopes [general linear model, test for het-
erogeneity of slopes, ts = 0.091, P = 0.928, table
S3 (15)] and intercepts (general linear model,
test for heterogeneity of intercepts, ti = 1.962,
P = 0.050; table S3), and a regression model
with common slope and intercept was the most
parsimonious [i.e., it scored the lowest in the
Bayesian information criterion (BIC), table S3].
In contrast, the crustacean (n = 667) and jelly-
fishes lines had different slopes (ts = –5.152, P <
0.001) and differed significantly within the full
range of body carbon overlap, being best described
by a model with separate regressions (table S3).
In contrast, all three groups clustered together in
a respiration versus body carbon log-log plot
(Fig. 2C). The jellyfishes line (n = 567) and the
line formed by pooling the fishes (n = 243) and
the crustaceans (n = 1421) data shared similar
slopes (ts = 1.936, P = 0.053) and intercepts (ti =
1.935, P= 0.053), being best described by a mod-
el with common slope and intercept (table S3).
This confirms that organisms with the same body
carbon respire similarly (14). Thus, jellyfishes and
fishes capture and consume prey at similar rates
with similar respiration costs and scope for growth,
suggesting the absence of a major disadvantage in
terms of prey capture mechanism (12). Because of
their higher clearance rates, they should cease to
grow at lower prey concentrations than crusta-
ceans. This is best evaluated by the threshold prey
concentration, PH=0, where feeding benefits equal

respiration losses. PH=0 can be found by setting
H = 0 in Eq. 1 and solving for P to arrive at
PH=0 = R/lCe. We can combine this equation
with reasonable figures for l, R, C, and e (table
S5) to estimate PH=0. Accordingly, jellyfishes,
fishes, and crustaceans of average body carbon
(0.0036, 0.068, and 0.00014 g of C per individ-
ual, respectively; geometric mean calculated with
individuals used for respiration and clearance
data; tables S1 and S2) would starve (negative
scope for growth) below threshold prey concen-
trations PH=0 of 14, 14, and 168 mg of C l−1,
respectively. These figures may be brought down
by an order of magnitude by assuming that the
organisms increase their clearance rates in re-
sponse to lowered food concentrations or optimal
prey sizes [supporting online material (SOM)
text and table S5], but the pattern persists: Fishes
and jellyfishes can thrive at lower prey concen-
trations than their crustacean prey.

In terms of fresh body weight, the situation is
apparently inverted: The clearance line for jelly-
fishes leveled with the crustacean line (Fig. 2B).
Their slopes were heterogeneous (ts = –3.855,
P < 0.001; same sample sizes as in the compari-
sons above), and a separate regressionsmodel was
favored by the BIC, although their lines differed
only outside a log(wetweight, g) range from –5.23
to –0.78 (table S3). In contrast, the jellyfishes
were well below the fishes line (Fig. 2C), their
slopes were heterogeneous (ts = 3.434; P <
0.001), their lines differed across the full range of
wet body weights, and a separate regressions
model scored the lowest BIC (table S3). This

Fig. 1. Prey capture in cruising medusae. (A) Flow
around a medusa during bell contraction (blue lines).
Fluid is transported from in front of the medusae,
along the bell margin, and into trailing vortices to
circulate through the capture surfaces (i.e., tenta-
cles). (B) The volume of fluid that they swim through
can be approximated as a cylinder (in red) with
dimensions determined by the projected surface
area (S) of the medusae and its velocity (U). (C)
However, only a portion of the cylinder of fluid
(volume in green) actually interacts with the capture
surfaces, determined by the part of the swimming
cycle that the fluid passes by the medusan bell (20)
[see figure 13 of (21)]. Although powered by ciliary
movement, a similar process applies to ctenophores.

1Departamento de Biología de Organismos y Sistemas, Uni-
versidad de Oviedo, Calle Catedrático Rodrigo Uría, sin número,
33071Oviedo, Spain. 2Instituto Español deOceanografía, Centro
Oceanográfico de Gijón, Avenida Príncipe de Asturias, 70 bis,
33212 Gijón, Spain. 3Department of Marine Biology and
Environmental Sciences, Roger Williams University, Bristol, RI
02809, USA.
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would seem to confirm the idea of a marked dis-
advantage because of the feeding mechanism
of jellyfishes (12), but their lower clearance rates
are compensated by an order of magnitude lower
respiration rates (Fig. 2D). The slopes of the
jellyfishes respiration line and that for pooled
crustaceans and fishes were not heterogeneous
(ts = 1.837, P = 0.066), but the intercepts differed
significantly (ti = 74.589, P < 0.001), which is
confirmed by the BIC (table S3). This suggests
that, whereas fishes achieve high clearance rates
through visual predation, jellyfishes rely on body
augmentation. It also poses an interesting prob-
lem, because bearing eyes comes with little hy-
dromechanical cost, whereas an inflated body is
harder to move through the water. Jellyfishes have
surmounted this problem by keeping swimming
costs low. Log-log regressions of cruising velocity
versus body size for jellyfishes (n = 67) had sim-
ilar slopes and lower intercepts than those for
crustaceans (n = 37; ts = 0.394, P = 0.694 and ti =
3.298, P = 0.001 for body carbon as covariate; ts =
–0.646,P=0.520 and ti = 7.706,P < 0.001 for wet
weight as covariate; table S3), and, except for a
set of observations in the cannonball jellyfish
Stomolophusmeleagris, allmeasurements of swim-
ming velocity of jellyfish fell below the lower 95%
confidence intervals for the fishes regressions (n =
49), both in terms of body carbon (Fig. 3A) and
wet weight (Fig. 3B). Three other jellyfish species
and one ctenophore for which neither body carbon
nor wet weight were available were also slow cruis-
ers, with velocities ranging from 0.4 to 3 cm s−1

(table S7). We next use cost-benefit optimization
theory to analyze the nature of this adaptation.

To model the feeding benefits, we will as-
sume that the total volume cleared from prey by a
cruising predator is proportional to its swimming
velocity, U, and to its projected cross surface,
S (16, 17), such that

C = bSU

where b is a searching efficiency corresponding to
the ratio of volume actually cleared from prey
(green in Fig. 1C) to volume perturbed (cylinder in
Fig. 1B). Solving Eq. 2 we arrive at b = C/SU,
which can be combined with estimates or mea-
surements ofC,S, andU to calculate b. This simple
exercise reveals that the searching efficiency b
ranges between 0.02 and 2.7 in jellyfishes, with a
geometric mean at 0.089, whereas it varied between
3 and 5 within the estimation body size range in
fishes (Fig. 3, C and D). In other words, the evolu-
tion of high clearance rates involves a tendency
toward small S and large b in visual predators—that
is, large search area relative to cross body surface—
but the reverse in contact cruising predators.

In Ware’s theoretical framework (16), the total
respiration of a cruising predator integrates a fixed
maintenance cost, Rb, plus a variable swimming
cost,D. In jellyfish, the latter can be estimated from
biomechanical equations for the drag of a hemi-
spherical body moving through the water (18)
such that

(2)

Fig. 2. Log-log plots of
temperature-corrected
clearance rates (A andB)
and temperature-corrected
respiration rates (C andD)
versus body carbon (left)
and body wet weight
(right) for fish (blue), jelly-
fish (red), and their crus-
tacean prey (black). Ea is
the activation energy (as-
sumed to be 0.65 eV), k
is Boltzmann’s constant
(0.0000862 eV K−1), and
T is the absolute temper-
ature (in K) (15).

Fig. 3. (A and B) Log-log plots of cruising (not escape) velocity versus body carbon (A) and body wet
weight (B). Data for fish (blue) and crustaceans (black) are from (22), after assuming a body carbon–to–volume
conversion of 100 kg of C m−3 from (13) and the same density as seawater. Data for jellyfishes
[different symbols for each species, with meanings in (C)] are from our data compilation in table S7. Thick
gray lines indicate ordinary least squares log-log fits for each group (comparison among lines and
regression statistics in tables S3 and S4, respectively). Dashed gray lines correspond to the 95%
confidence intervals for individual predictions for the fish regression. (C and D) Estimated searching
efficiencies versus body carbon and body wet weight for fishes (blue line) and jellyfishes (red
symbols). The fish line was estimated by rearranging Eq. 2 as b = C/SU and combining this equation
with values of C and U estimated from allometric equations in Figs. 2A and 3A (table S4) and values of
S estimated by assuming cylindrical shape and an approximate width:length ratio of 7:1, as in (22).
For jellyfishes, we combined each pair of observed U and S (Fig. 3A and table S7) with an estimate of
C according to the allometric equation in Fig. 2A (table S4), arriving at a single estimate of b for every
cruising velocity measurement.
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R ¼ Dþ Rb ¼ 1

2h
aCDrSU

3 þ Rb ð3Þ

where h is the propulsive efficiency, r is the
water density, and CD is the drag coefficient.
We can now substitute C and R in Eq. 1 by the
right-hand sides of Eqs. 2 and 3, respectively,
and, assuming that l = 1 for jellyfish (table S5),
arrive at

H ¼ bSUPe −
1

2h
aCDrSU

3 − Rb ð4Þ

H represents the scope for growth of a jellyfish,
taking into account feeding benefits, swimming
costs, and basal metabolism. Figure 4A represents
H against swimming velocity and prey concen-
tration for a 10-cm moon jellyfish Aurelia aurita,
assuming reasonable values for the parameters of
Eq. 4 (table S8). The diagonal ridge crossing the
function from lower left to upper right is due to the
functional relationship with the swimming veloc-
ity, which is cubic in the case of D but only linear
for the feeding benefits (Eq. 4). The scope for
growth is positive above a threshold prey concen-
tration PH=0, which varies as a function of the
swimming velocity. Because of the characteristic
ridge in the H function, PH=0 reaches a minimum
for an optimal swimming velocity (Fig. 4A), which

is found by setting dPH¼0
dU ¼ 0 and solving for U

(SOM text), yielding

Uopt ¼ hRb

aCDrS

� �1
3 ð5Þ

Equation 5 implies that the evolution of larger
S, that is, larger bell surfaces and more gelatinous
bodies to sustain them, will lead to slower cruising
velocities. AnA. aurita jellyfish 10 cm in diameter
swims at U = 2.2 cm s−1, in the vicinity of Uopt =
4.7 cm s−1 (Fig. 4A). Thus, it grows almost at the
lowest possible prey concentration (PH=0 at Uopt

is 7 mg of C l−1) and sustains only mild shrinking
rates when starving, because of the moderate slope
of theH function atUopt (Fig. 4A), explaining their
capacity to enduremonths of shrinkagewhen prey
is scarce (19). By contrast, a hypothetical non-
gelatinous A. aurita with the same body carbon
but a normal water content and a concomitantly
smaller S would have an Uopt =12.7 cm s−1 (Fig.
4B), switching to shrinkage at PH=0 = 50 mg of C
l−1, which suggests that being gelatinous allows
access to lower prey concentrations. Note that Uopt

is independent of b (Eq. 4); therefore, evolution
of high b, the fish strategy, brings the minimum
of the PH=0 threshold function down to very low
prey concentrations while preserving its blunt

shape (Fig. 4C), rendering this strategy less sen-
sitive to foraging velocity optimization.

It seems that jellyfish have responded to the se-
lective pressure of prey dilution typical of life as
predators by evolving large bodies and collection
structures while keeping the dynamic component
of the feeding process, the swimming velocity,
slow. Unlike fish, being large and slow may render
jellyfishesmorevulnerable to predation andpassively
dependent on ocean currents for sex encounter and
recruitment to benthos. However, ourwork suggests
that their bioenergetic performance is very similar.
By using their primitive feeding systems, jelly-
fishes achieve instantaneous production rates sim-
ilar to those of fishes and are capable of capitalizing
on ecosystem changes resulting from overfishing.
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Fig. 4. Plot of the scope for
growth, H, versus the prey
concentration, P, and the
swimming velocity, U, accord-
ing to Eq. 4, for (A) a 10-cm-
diameter A. aurita, (B) a
hypothetical nongelatinous
A. aurita with the same car-
bon content as that in (A) but
a correspondingly smaller col-
lector surface S, and (C) same
as in (B) but assuming the
searching efficiency b of a fish
with similar body carbon,
according to the line in Fig.
3, C and D. Sources, param-
eter values, calculations, and
assumptions are in table S8.
Colors indicate values of H,
with green to red for positive
and blue for negative growth
rates. Thin lines indicate log-
arithmicallydistributedgrowth
isolines. The thick line cor-
responds to the 0-growth
isocline, PH=0.
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