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Latitudinal differentiation in the effects of the toxic dinoflagellate
Alexandriumspp. on the feeding and reproduction of

populations of the copepodAcartia hudsonica
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Abstract

Blooms of the dinoflagellateAlexandriumspp. increase in their frequency, toxicity and historical presence with increasing
latitude from New Jersey (USA) to the Gaspé peninsula (Canada). Biogeographic variation in these blooms results in dif-
ferential exposure of geographically separate copepod populations to toxicAlexandrium. We hypothesize that the ability of
copepods to feed and reproduce on toxicAlexandriumshould be higher in copepods from regions that are frequently exposed to
toxic Alexandriumblooms. We tested this hypothesis with factorial common environment experiments in which female adults
of the copepodAcartia hudsonicafrom five separate populations ranging from New Jersey to New Brunswick were fed toxic
and non-toxic strains ofAlexandrium, and the non-toxic flagellateTetraselmissp. Consistent with the hypothesis, when fed
toxicAlexandriumwe observed significantly higher ingestion and egg production rates in the copepods historically exposed to
toxic Alexandriumblooms relative to copepods from regions in whichAlexandriumis rare or absent. Such differences among
copepod populations were not observed when copepods were fed non-toxicAlexandriumor Tetraselmissp. These results
were also supported by assays in which copepods from populations both historically exposed and naı̈ve to toxicAlexandrium
blooms were fed mixtures of toxicAlexandriumandTetraselmissp. Two-week long experiments demonstrated that when
copepods from populations naı̈ve to toxicAlexandriumwere fed a toxic strain ofAlexandriumthey failed to acclimate, such
that their ingestion rates remained low throughout the entire two-week period. The differences observed among populations
suggest that local adaptation of populations ofA. hudsonicafrom Massachusetts (USA) to New Brunswick (Canada) has
occurred, such that some populations are resistant to toxicAlexandrium. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Acartia; Adaptation;Alexandrium; Biogeography; Evolution; Feeding deterrence; Red tide algae; Toxin resistance; Zooplankton

1. Introduction

It has recently been demonstrated that the ecolog-
ical relationship between some zooplankton grazers
and harmful phytoplankton blooms is closely shaped
by their evolutionary history (Hairston et al., 1999;
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Hairston et al., 2002). Freshwater studies examining
the grazer–toxic algae relationship have shown that
the populations ofDaphnia from lakes where toxic
cyanobacteria have bloomed for generations have
evolved resistance to the toxic algae (Gilbert, 1990;
Hairston et al., 1999; Hairston et al., 2002). The re-
sistance to toxic algae has enabled the zooplankton to
feed and grow at higher rates in the presence of the
toxic cyanobacteria thanDaphnia never exposed to
the toxic algae.

1568-9883/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S1568-9883(02)00007-0
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Harmful algal blooms (HABs) in marine environ-
ments are increasing worldwide (Hallegraeff, 1993).
Since, these blooms only occur in the presence of
relaxed grazing pressure, it is important to understand
how HAB algae affect zooplankton grazing rates.
However, if marine zooplankton populations are able
to adapt to the toxic algae, then their relationship to
the toxic algae must be examined in the context of the
historical exposure of each population to the algae.

The biogeographic characteristics of the toxic di-
noflagellateAlexandriumspp. (Balech, 1990) along
the northeast coast of North America are ideal to exam-
ine whether historical exposure of marine zooplankton
affects their ecological relationship with toxic algae.
Biogeographic variation in the toxin content and
bloom characteristics of the dinoflagellate throughout
the Northeast coast of North America has been well
documented (Cembella et al., 1988; Anderson et al.,
1994; Anderson, 1997). In this region,Alexandrium
has two morphospecies that have been linked to the
production of paralytic shellfish poisoning (PSP)
toxins (A. tamarenseand A. fundyense). Blooms of
highly–moderately toxicAlexandrium fundyenseoc-
cur annually along the East Coast of Canada south to
Massachusetts Bay. South of Massachusetts Bay there
are isolated blooms ofA. fundyenseandA. tamarense
on Cape Cod and the southeast New England coast in
enclosed embayments and salt ponds. These southern
blooms have lower toxicity and occur less regu-
larly (Maranda et al., 1985; Cembella et al., 1988;
Anderson et al., 1994; Anderson, 1997). From detailed
surveys of cysts and motile planktonic cells along
the New Jersey coast, it is known thatA. tamarense
occurs in one isolated embayment along the northern
New Jersey coast where it has only rarely bloomed,
but it is not toxic (Cohn et al., 1988; Mahoney et al.,
1995; Anderson, 1997). In addition to higher toxicity
levels,Alexandriumblooms in Canada and along the
Maine coast have a longer history of occurrence, with
the first reported PSP event attributed toAlexandrium
sp. in 1889 in eastern Canada (Prakash et al., 1971).
The introduction ofAlexandrium to more southern
waters is believed to have occurred during a large
bloom event in 1972 (Anderson et al., 1994). Thus,
there appears to be a latitudinal gradient in the his-
torical occurrence, annual frequency and toxicity of
Alexandriumblooms from north to south along the
east coast of North America.

Biogeographic variation in the blooms results in
differential exposure of geographically separate cope-
pod populations to toxicAlexandrium. In this study,
we examine the effects of the toxic dinoflagellate,
Alexandrium, on copepod grazers from geograph-
ically separate populations. We hypothesized that
copepod populations from regions which experience
frequent and highly toxic blooms ofAlexandrium
exhibit enhanced fitness parameters when feeding on
toxic Alexandriumcompared to copepod populations
from regions where the blooms rarely occur and are
less toxic. We tested this hypothesis with the calanoid
copepod,Acartia hudsonica(clausi), which occurs
throughout the geographic range ofAlexandriumand
is the most abundant copepod in coastal waters during
toxic blooms in the north (Teegarden et al., 2001).

2. Materials and methods

2.1. Collection and culturing of copepods
and algae

Populations ofAcartia hudsonicawere collected
from Passamaquoddy bay, NB, Canada, Casco bay,
ME, Great Pond, MA, Mumford Cove, CT, and Great
bay, NJ, using a 200 mm mesh plankton net. Upon
collection, copepods were transported to the labora-
tory within 24 h. Cohorts of 1000–1500 individuals
from each population were separated and cultured
under identical conditions followingFeinberg and
Dam (1998). This method proved to be an efficient
and gentle way to maintain separately, for over a year
(∼11 generations), the different copepod populations
with densities of 500–1000 individuals per 20 l. One
concern of maintaining cultures for long periods of
time is that their small population sizes may cause ge-
netic drift and decreased genetic variation within the
populations. To sustain natural levels of genetic vari-
ation, we maintained high copepod densities within
the cultures and refreshed the cultures with new indi-
viduals from the field each season whenA. hudsonica
was present in the water column.

The copepod cultures were maintained at 12–14◦C
and 12/12 h light/dark (L/D) regime during rearing
and experiments. The standard rearing diet consisted
of a mixture ofThalassiosira weissflogii, Isochrysis
galbana, andRhodomonas lens, which was kept at a
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concentration of 400–500�g C l−1 by replenishment
every other day. This concentration is near the satura-
tion level of the functional and numerical response of
A. hudsonica. All copepod populations were reared at
the same temperature, light and food regimes for sev-
eral generations to eliminate both maternal effects and
environmental variance. This allowed us to attribute
the observed differences among populations to genetic
variance (Falconer, 1996). Copepods were cultured for
11 generations before the latitudinal experiment, eight
generations before the toxicity experiment and five
generations before the acclimation experiment.

Three strains ofAlexandriumspp., two high-toxin
strains and one low-toxin strain, were used for this
study (Table 1). The toxic strain ofA. tamarensewas
isolated from Casco bay, ME (CB-307 strain; ME
Alexandrium) and a toxic strain ofA. fundyensefrom
the bay of Fundy, NB, Canada (NB-05 strain; NB
Alexandrium). The non-toxic strain ofA. tamarense
was isolated from Mumford Cove, Connecticut
(GTCN-16 strain; CTAlexandrium). The strain from
the bay of Fundy was isolated in the laboratory from
cysts. All other strains were obtained from various
other laboratories. All cultures were grown in F/2 me-
dia (Guillard, 1975) at 14◦C with 12/12 h L/D cycle.
The cultures were maintained in exponential growth
for use in the experiments by replacing half of the
cultured medium with fresh F/2 media each week.

Before each experiment, replicate aliquots of the
Alexandriumculture to be used were collected for
toxin extraction (Table 1). Toxins were extracted

Table 1
Experimental diets. Means of the equivalent spherical diameter (ESD), carbon content and toxicity of each algal strain are shown at the
time of the experiments. TheAlexandriumstrains are identified by the location of collection (CT-Mumford Cove, CT; ME-Casco bay, ME;
and NB-bay of Fundy, NB) and the name of the strain

Experiment and diet Strain name ESD (�m) Carbon (�g C per cell) Toxicity (pg STX
equivalent per cell)

Latitudinal comparison
CT Alexandriumsp. GTCN-16 26.0 2.6× 10−3 0.00
ME Alexandriumsp. CB-307 21.5 1.5× 10−3 5.22
NB Alexandriumsp. NB-05 26.6 2.8× 10−3 16.12
Tetraselmissp. 8.5 5.7× 10−5

Mixed diet
ME Alexandriumsp. CB-307 19.6 1.1× 10−3 4.93
Tetraselmissp. 7.6 4.1× 10−5

Acclimation
NB Alexandriumsp. NB-05 23.7 2.0× 10−3 9.25
Tetraselmissp. 7.4 3.8× 10−5

according toAnderson et al. (1994)and analyzed
by HPLC using methods ofOshima et al. (1989)
in our laboratory (our source for the STX standards
was NRC, Halifax, Canada). Of the suite of saxitox-
ins present inAlexandrium, we quantified the most
potent, saxitoxin (STX), neosaxitoxin (NEO), and
gonyautoxins I–IV (GTX1–4). Analysis of this suite
of toxins was adequate for this study, since toxin
analyses were performed only to confirm that the
toxic strains were indeed toxic and that the non-toxic
strains were non-toxic. Additionally, the toxins that
were not analyzed, the B and C saxitoxins and decar-
bamoyl saxitoxins, have been found to be the least
potent of the toxins (Schatz, 1986; Indrasena and
Gill, 1999). More importantly, toxicity levels are not
central to this study, since our goal was to examine
relative differences among copepods that were fed the
sameAlexandriumstrain.

2.2. Latitudinal comparison experiments

Experimental conditions were identical to rearing
conditions. A factorial design was used to compare
the rate processes of the fiveA. hudsonicapopula-
tions given four different diets: three strains ofAlexan-
drium of varying toxicity (Table 1; isolated from bay
of Fundy, NB; Casco bay, ME; Mumford Cove, CT)
and the non-toxic flagellateTetraselmissp. Prior to the
experiments, none of the copepods had been exposed
to toxic Alexandrium. A period of 48 h before an ex-
periment, 20–25 healthy adultA. hudsonicafemales



116 S.P. Colin, H.G. Dam / Harmful Algae 1 (2002) 113–125

and 10 males were hand picked from the five cope-
pod cultures and placed into separate 1000 ml beakers
filled with 0.2�m filtered seawater. The beakers were
lightly aerated. After 24 h the seawater in each of the
vessels was replaced. During this 48 h period, cope-
pods were not fed. This ensured that egg production
during the experiments reflected the effects of the ex-
perimental diet (Tester and Turner, 1990).

At the end of the starvation period, pairs of females
were picked from each population beaker, sized by mi-
croscopy, and placed into eight separate 140 ml screw
cap bottles containing 70�g C l−1 of the experimental
diet. The choice of food concentration was consistent
with concentrations ofAlexandriumthat the copepods
may encounter during naturalAlexandriumblooms
(Anderson et al., 1983; Watras et al., 1985). Tripli-
cate control bottles contained the diet solution without
copepods. The bottles were topped off with the diet
solution, sealed to prevent the formation of air bubbles
and placed on a plankton wheel, rotating at 1.3 rpm for
24 h. Initial water samples were taken and preserved
in a 0.5% acid lugols solution for later cell counts.

After 24 h, samples were taken and preserved for
cell counts. Algal concentrations forAlexandrium
were determined from microscopic cell counts us-
ing the Utermöhl (1958)technique. Cell counts for
Tetraselmiswere performed using an Elzone® 280
particle counter, where the algal size distribution used
to count cells was determined from initial samples
and kept constant for final cell counts. Clearance
and ingestion rates were calculated using equations
from Frost (1972). To determine the carbon content
of the diets (Table 1), aliquots from the grazing con-
trol bottles were filtered onto combusted (500◦C,
24 h) GF/F-filter pads and dried. Carbon content was
determined using a Carlo-Erba EA1108 elemental
analyzer.

Eggs and copepods were counted and examined for
general condition and females were resized. The cope-
pods were then kept for 24 h in petri dishes containing
0.2�m filtered seawater. After this second incubation,
females were checked and the newly laid eggs were
counted and added to the egg count from the previous
day. This allowed us to calculate gross growth effi-
ciencies (GGE):

GGE= carbon growth

carbon ingested
· (1)

The estimate of the GGE assumes that all of the
copepod growth was manifested in egg production,
which is a reasonable assumption, since there was no
significant increase (unpairedt-test,P > 0.01) in size
of the females before and after the experiment.

From each copepod population, we individually
placed four replicates of eight eggs into 250�l wells
containing 0.2�m filtered seawater. Hatching rates
were determined according toTang et al. (1998)over
4 days.

The factorial experiments were designed to allow
for statistical comparison using a two-way ANOVA
(location versus diet) (Sokal and Rohlf, 1981). In this
design, we compared the response of the five cope-
pod populations within and among each diet. Post hoc
comparisons employed the Tukey–Kramer method.

2.3. Mixed diet experiment

To test whetherAlexandriumis indeed toxic toA.
hudsonica, we carried out experiments with mixed
diets. We measured the ingestion and egg production
rates of a northern (New Brunswick) and southern
(Connecticut) copepod populations given different
mixtures of toxicAlexandrium(Maine) and non-toxic
Tetraselmissp. based on the percent of carbon (100%
Alexandrium/0% Tetraselmis, 75/25, 50/50, 25/75,
0/100). The experimental conditions, starvation and
incubation period and methodology were the same as
those of the experiment already outlined. The total
concentration of each diet was 250�g C l−1 which is
limiting to the ingestion and growth ofA. hudsonica
and within the range ofAlexandriumblooms. The
toxic effects ofAlexandriumcan be determined by
plotting the ingestion and egg production rates versus
the percentage ofTetraselmisin the diet (Jónasdóttir
et al., 1998; Colin and Dam, 2002). Alexandriumcan
be considered toxic to grazers if it is present in the
mixed diet: (a) reduces the grazers’ total ingestion
rates; or (b) detracts from the beneficial effects of the
control diet by reducing egg production in the food
mixtures (Jónasdóttir et al., 1998; Colin and Dam,
2002). This latter point can be examined by drawing
a reference line between the egg production at 100%
Alexandriumtoxic diet and 100%Tetraselmisdiet. A
detrimental effect is suggested when observations of
egg production for the food mixtures fall below the
reference line.
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2.4. Acclimation experiment

Changes in copepod ingestion rates were monitored
for 14 days (336 h) to determine if the southernA.
hudsonicapopulation from New Jersey was able to
acclimate to the presence of toxicAlexandriumin its
diet. Prior to each experiment, adultA. hudsonicawere
maintained in cultures under the standard rearing con-
ditions with the standard diet. Then, 170 female cope-
pods were transferred to a large batch (4 l) filled with
a food solution of 50% toxicAlexandriumand 50%
Tetraselmis,or a control solution of 100%Tetraselmis
(representing the conditions atT = 0). The total food
concentration was maintained at 250�g C l−1 in the
mixture and control diets, a concentration that is typ-
ically limiting to the ingestion and growth ofA. hud-
sonica. Copepod ingestion rates were determined from
24 h incubations using 540 ml bottles (three replicates
for treatments and two replicates for controls). These
were done at different times,T, (T = 24, 48, 72, 120,
192, and 336 h) withT representing the end of each
incubation. Treatment bottles each contained seven fe-
males and three males, which had been removed from
the large batch container. Environmental conditions
were the same as the previously detailed experiments.
Control and treatment bottles were kept on a plankton
wheel during incubations. At the end of the incubation
period, samples were taken for cell counts. Copepods
were counted and examined for general condition and
returned to the large batch. Cells were counted and
ingestion rates measured as described earlier for the
latitudinal comparison experiments.

3. Results

3.1. Latitudinal comparison experiment

To confirm the hypothesis that copepod fitness
parameters when feeding on toxicAlexandriumare
determined by the historical exposure of copepod
populations to the dinoflagellate, two predictions must
be met. First, copepod ingestion, egg production, egg
hatching or survival rates should be lower in the pop-
ulations näıve (southern) to toxicAlexandriumthan
the historically exposed populations (northern). Sec-
ond, these specific differences between northern and
southern copepod populations should not exist in the

Table 2
The ANOVA table of ingestion and egg production rates of the
five copepod populations (NJ, CT, MA, ME, NB) feeding on
four diets (non-toxicTetraselmissp., non-toxic CTAlexandrium,
medium-toxin ME Alexandrium, and higher-toxin NBAlexan-
drium)

Source d.f. P-value

Ingestion
Copepod population 4 0.04
Algal diet 3 0.02
Interaction 12 <0.0001

Egg production
Copepod population 4 <0.0001
Algal diet 3 <0.0001
Interaction 12 <0.0001

absence of toxicAlexandriumas a food source. Cope-
pod egg production and ingestion rates when feed-
ing on toxic versus non-toxic diets differed among
the copepod populations and diets (Table 2). Post
hoc analyses revealed that the relative egg produc-
tion rates observed among the copepod populations
were consistent with both of the above predictions
(Fig. 1). When the copepods fed on the toxicAlexan-
drium strains from New Brunswick (Fig. 1A; NB
Alexandrium; Tukey–Kramer,P < 0.05) and Maine
(Fig. 1B; ME Alexandrium; Tukey–Kramer,P <

0.05; Fig. 1) there was a dramatic decrease, relative
to the control diet, in the egg production rates of only
the New Jersey and Connecticut copepod populations
(Tukey–Kramer,P < 0.05). In contrast, no such de-
crease was observed with the non-toxicAlexandrium
strain from Connecticut (Fig. 1C, CT Alexandrium,
ANOVA, d.f . = 4, P = 0.1) or non-toxicTetraselmis
sp. (Fig. 1D; Tukey–Kramer,P > 0.05).

The ingestion rates of the copepods from New Jer-
sey relative to the northern copepod populations were
also consistent with both of the above predictions.
When the copepods fed on the toxicAlexandrium
strains from New Brunswick (Fig. 2A; NB Alexan-
drium; Tukey–Kramer,P < 0.05) and Maine (Fig. 2B;
ME Alexandrium; Tukey–Kramer,P < 0.05; Fig. 1)
there was a dramatic decrease in the ingestion rates
of only the NJ copepod population (Tukey–Kramer,
P < 0.05), while no such decrease was observed for
the non-toxic diets (Fig. 2C and D; ANOVA, d.f . = 4,
P = 0.1 for CT Alexandrium; Tukey–Kramer,P >

0.05 for Tetraselmissp.). Unlike egg production, the



118 S.P. Colin, H.G. Dam / Harmful Algae 1 (2002) 113–125

Fig. 1. Mean egg production rates of the five geographically
distinct populations ofAcartia hudsonica. The origin of each
copepod population is identified by location (NB: New Brunswick,
ME: Maine, MA: Massachusetts, CT: Connecticut, and NJ: New
Jersey) and plotted relative to latitude (NB: 45◦04′, ME: 43◦39′,
MA: 41◦34′, CT: 41◦19′, CT: 39◦23′). Copepods were fed diets
containing: (A) high-toxin NBAlexandrium, (B) medium-toxin ME
Alexandrium, (C) non-toxic CTAlexandrium, and (D) non-toxic
Tetraselmissp; the mean and S.E. (n = 8) are shown;P-values for
single ANOVA comparing differences among copepod populations
are given within figures; asterisks indicate values significantly
different from three northern copepod populations (MA, ME, NB)
based upon Tukey–Kramer post hoc tests (P < 0.05, if value is
only different from one population which is shown in parentheses);
except for D, where asterisks indicate values were significantly
different from all other populations.

Fig. 2. The mean ingestion rates of the five geographically dis-
tinct populations ofAcartia hudsonica. The origin of each cope-
pod population is identified by location (NB, ME, MA, CT, and
NJ refer toFig. 1 for the full form of the abbreviations) and plot-
ted relative to latitude. Copepods were fed diets containing: (A)
high-toxin NB Alexandrium, (B) medium-toxin MEAlexandrium,
(C) non-toxic CT Alexandrium, and (D) non-toxicTetraselmis
sp; the mean and S.E. (n = 8) are shown;P-values for single
ANOVA comparing differences among copepod populations are
given within figures; asterisks indicate values significantly differ-
ent from all other copepod populations based upon Tukey–Kramer
post hoc tests (P < 0.05).

ingestion of toxicAlexandriumstrains by the CT cope-
pods was not lower than the northern copepod popu-
lations (Fig. 2A and B; Tukey–Kramer,P > 0.05).

The toxic strains ofAlexandriumdid not have lethal
effects on any of the individuals from the five copepod
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Fig. 3. The mean egg hatching rates of the five geographically
distinct populations ofAcartia hudsonica. The origin of each
copepod population is identified by location (NB, ME, MA, CT,
and NJ refer toFig. 1 for the full form of the abbreviations) and
plotted relative to latitude. Copepods were fed diets containing: (A)
high-toxin NB Alexandrium, (B) medium-toxin MEAlexandrium,
(C) non-toxic CTAlexandrium, and (D) non-toxicTetraselmissp;
the mean and S.E. (n = 4) are shown.

populations. Survival (not shown) was always high,
averaging above 90% regardless of diet.

Egg hatching rates were high and did not signifi-
cantly differ among diets or within diets among the
copepod populations (Fig. 3; ANOVA for arcsine
transformed data,P > 0.05).

The GGE ranged from 0.1 to 0.4 and typically varied
independent of copepod populations and diets (Fig. 4).

Fig. 4. The GGE of the fiveAcartia hudsonicapopulations fed
different diets: (A) high-toxin NBAlexandrium, (B) medium-toxin
ME Alexandrium, (C) non-toxic CT Alexandrium, and (D)
non-toxic Tetraselmissp.; the mean and S.E. (n = 8) are shown.

Only the copepods from Connecticut exhibited signifi-
cantly lower GGEs when fed the NBAlexandrium
strain (arcsine transformed Tukey–Kramer,P<0.05).

Since, copepod survival, egg hatching or GGE were
insensitive to toxicAlexandrium, the latitudinal effects
of Alexandriumon copepod fitness are only manifest
in their ability to feed and reproduce.

3.2. Mixed diet experiment

Since, the comparisons from the factorial ex-
periment utilized sole food diets (i.e. 100% toxic
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Fig. 5. The mean ingestion rates of NB (circles) and CT (filled
circles) copepods vs. the carbon (%) ofTetraselmissp. in the diet;
mixture diets consist ofTetraselmisand ME Alexandrium (0%
Tetraselmissp. indicates 100%Alexandrium); linear regressions
for all of the data from each population are shown (NB, dotted;
CT, solid); error bars are S.E. (n = 8) (refer toFig. 1 for the full
form of the abbreviations).

Alexandrium) we compared the ingestion and egg
production rates of a southern (Connecticut) and
northern (New Brunswick) copepod population fed
different mixtures of toxicAlexandriumand non-toxic
Tetraselmissp. A two-way ANOVA indicated that
while the effect was not significant between popu-
lations (d.f . = 1, P = 0.07) there was a significant
interaction (population× diet, d.f . = 4, P = 0.01).
Thus, the ingestion rates of populations were affected
differently by increased amounts ofAlexandriumin
the diet. The ingestion rates of copepods from Con-
necticut decreased as the proportion of toxicAlexan-
drium in the diet increased (Fig. 5), whereas, the
ingestion rates of the copepods from New Brunswick
remained unaffected (Fig. 5). Additionally, the CT
copepods produced fewer eggs than the NB copepods
(two-way ANOVA, d.f . = 1, P = 0.04). However,
within both the New Brunswick and the Connecticut
populations there were no observable differences in
egg production rates among diets (Fig. 6).

3.3. Acclimation experiment

Since, all of the experiments comparing the cope-
pod populations utilized 24 h incubation periods, we
measured the changes in copepod ingestion in the NJ

Fig. 6. The mean egg production rates of: (A) NB and (B) CT
copepods vs. the carbon (%) ofTetraselmissp. in the diet; mixture
diets consist ofTetraselmisand MEAlexandrium(0% Tetraselmis
sp. indicates 100%Alexandrium); the line connecting the mean
rates at 100%Alexandriumand 100%Tetraselmissp. is the ref-
erence line; error bars are S.E. (n = 8).

copepod population over a 14-day period to determine
if the copepods were able to physiologically acclimate
to toxic Alexandrium. Ingestion rates of the New Jer-
sey Acartia hudsonicafed a 50/50 mix of toxic NB
Alexandriumand non-toxicTetraselmiswere signif-
icantly lower than their ingestion rates on a control
diet of 100%Tetraselmis(Fig. 7, ANOVA, d.f . = 1,
P < 0.001). Ingestion rates on the mixed toxic diet re-
mained consistently low over the 14 days (Fig. 7, lin-
ear regression,P = 0.3). Thus, individuals from the
New Jersey population were not able to mitigate the
negative effects that toxicAlexandriumhas on their
ingestion rates. There was no significant difference
(ANOVA, d.f . = 1, P = 0.4) in the ingestion rates
of the two components of the mixed diet,Tetraselmis
sp. andAlexandrium.
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Fig. 7. The NJ copepod population mean ingestion rates on
50/50 mixed diet of toxic NBAlexandriumsp. andTetraselmis
sp. (filled circle) and on a sole diet of non-toxicTetraselmis
sp. (square) measured from 24 h incubations at different time in-
tervals: times indicate the end times of the incubation periods;
error bars are S.E. (n = 3) (refer toFig. 1 for the full form of the
abbreviation).

4. Discussion

4.1. Latitudinal differentiation

Biogeographic differences in populations of con-
specifics often arise due to genetic differentiation
among the populations. In order for genetic differen-
tiation to occur in the populations with large disper-
sal capabilities, such as marine copepods, selective
pressures must act on the populations (Bucklin and
Marcus, 1985; Burton, 1986; Hilbish, 1996). Several
studies in marine systems have identified genetically
distinct populations of conspecifics, with high disper-
sal capabilities, which have locally adapted to selec-
tive pressures (e.g. copepods,Burton and Feldman,
1981; Burton, 1986; Bradley, 1986; killifish, Powers
et al., 1986; softshelled clam,Bricelj et al., 2000,
mussel,Koehn et al., 1980; Hilbish and Koehn, 1985,
oligochaete,Klerks and Levinton, 1989). Phenotypic
variation is due to genetic and environmental vari-
ances and their interactions (Falconer, 1996). Hence,
genetic differences among populations of conspecifics
are often determined by comparing phenotypes of
individuals from different populations reared for gen-
erations in common environments (Lonsdale and
Levinton, 1985; Schultz and Conover, 1997; Boersma

et al., 1999). Because our comparisons of ingestion,
egg production and hatching rates among geograph-
ically separate copepod populations were done after
several generations of being reared under common
environmental conditions to all populations, we can
attribute any of the observed trait differences among
the populations to genetic variation (Falconer, 1996;
Conover and Schultz, 1995).

The observed differences in theA. hudsonica
populations’ tolerance to toxicAlexandriumsp. are
consistent with local adaptation in some populations
to the toxic dinoflagellate. The northern populations
(MA, ME, NB), whereAlexandriumblooms are most
frequent and toxic, exhibited enhanced ingestion and
egg production rates when given toxicAlexandrium
relative to the two southern populations (Figs. 1A and
B and 2A and B). These differences are congruous
with the environmental “grain” exerted byAlexan-
drium (as seen in the frequency and toxicity of the
blooms) among the geographic locations. However,
the rate processes among the copepod populations did
not differ when the copepods were fed the non-toxic
Alexandriumstrain (Figs 1C and D and 2C and D).
These results support the idea that the MA, ME and
NB copepod populations have evolved toxin resis-
tance toAlexandrium.

While both the southern populations were less
tolerant than the three northern populations, we
observed tolerance differences between the two
southern copepod populations (New Jersey and
Connecticut) as well. The copepods from New Jer-
sey could not tolerate either of the higher toxin
(NB Alexandrium) or the lower toxin (MEAlexan-
drium) Alexandriumstrains. However, the CT cope-
pods did not exhibit reduced ingestion rates on
either of the toxic strains (Fig. 2), although their
egg production on the higher toxin strain was re-
duced (Fig. 1). These results might be related to
differences in the presence of toxicAlexandrium
in each region. The NJ copepods are from a re-
gion where toxic blooms ofAlexandrium have
not occurred (Cohn et al., 1988; Mahoney et al.,
1995); thus, they would not have been exposed to
toxic Alexandrium. Without an opportunity to adapt
to the toxic dinoflagellate, we would expect the NJ
copepods to have the lowest tolerance forAlexan-
drium. The ingestion rates of the NJ copepods were
similar to rates of otherAcartia spp. populations fed
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monoalgal diets of toxicAlexandrium (Ives, 1985;
Teegarden and Cembella, 1996; Teegarden, 1999).
Ives (1985)collected copepods from regions where
Alexandriumdid not bloom.Teegarden and Cembella
(1996) and Teegarden (1999)employed a copepod
species,A. tonsa, whose seasonal cycle does not
overlap with that ofAlexandriumblooms. Hence, in
these three studies the copepods were probably naı̈ve
to Alexandriumblooms. Likewise, all five copepod
populations, in our study, ingested the non-toxic
Alexandriumcells at the rates similar to other stud-
ies whereA. hudsonica(clausi) was fed non-toxic to
low-toxic Alexandriumspp. cells (Ives, 1985; Dutz,
1998).

The mixed tolerance that the CT copepods exhibited
for toxic Alexandriumcould also be related to their ex-
posure history. ToxicAlexandriumhas bloomed in the
past in the region where the CT copepods were col-
lected; but these blooms were much less frequent and
much less toxic than the bloom in the northern regions
(Anderson et al., 1994; Anderson, 1997). Additionally,
we might expect some genetic exchange between the
CT and MA populations due to their proximity. Both
of these factors would contribute to the existence of
some tolerant individuals in the CT copepod popula-
tion. Higher genetic variability within the Connecti-
cut population, relative to the New Jersey population,
could explain the mixed tolerance we observed in the
Connecticut population.

To investigate further the differences in the harm-
ful effects of toxic Alexandriumon the CT cope-
pod population versus a northern (New Brunswick)
copepod population, we measured the differences in
ingestion and egg production on diets containing dif-
ferent mixtures of MEAlexandriumandTetraselmis.
Despite using a strain with moderate toxin content
(about 5 pg STX equivalents per cell,Table 1), we
still observed that the northern NB and southern CT
copepod populations were affected differently by the
presence of toxicAlexandriumin their diet. The CT
copepods’ ingestion decreased as the amount of toxic
Alexandriumincreased in the mixed diets, whereas,
the NB copepods’ ingestion remained unchanged
(Fig. 5). Likewise, these differences in ingestion
translated into differences in egg production (Fig. 6).
However, while it appears the CT copepod’s egg pro-
duction rates fell just below the reference line, the
differences among diet mixtures were not significant.

Thus, according toJónasdóttir et al. (1998), the
framework to the test for toxicity, these results show
that at this low toxin content,Alexandriumdid not
have toxic effects on the CT copepods.

The three northern populations (MA, ME, NB)
displayed similar ingestion and egg production rates
when fed toxicAlexandriumdiets (Figs. 1A and B
and 2A and B). The MA copepods were collected
from a region whereAlexandriumhas only bloomed
occasionally and has modest toxin content. The ME
and NB copepods were collected from regions where
Alexandriumblooms are much more frequent, about
once per year, and of high–moderate toxin content
(Anderson et al., 1994; Anderson, 1997). This incon-
sistency between the exposure and resistance the three
copepod populations toAlexandriumdeserves further
consideration. The existence of adapted individuals
in a population must result by local selection or the
immigration of individuals from already adapted pop-
ulations. In the present case, this would be from the
north (Crisp, 1978; Burton, 1986). If adaptation took
place in each region, we might expect individuals to
be adapted to the particularAlexandriumstrain or
level of toxicity common to that region. Thus, the
copepods from MA would be less resistant to the
higher toxin Alexandriumstrains, since the blooms
in MA are less toxic (Anderson et al., 1994). How-
ever, if there were high gene flow among the three
copepod populations, then the populations would
become less genetically distinct and the geographic
range of the resistance to toxicAlexandriumcould
increase. Since, the resistance of the MA copepods
to toxic Alexandriumwas similar to the ME and NB
copepod’s tolerance, we could speculate that there is
genetic exchange between the MA and northern pop-
ulations. It is highly reasonable to expect individuals
from the ME and NB population to mix due to the
circulation in the Gulf of ME (Smith and Schwing,
1991; Anderson et al., 1994). However, Cape Cod
has generally been found to be a barrier that restricts
the gene flow between populations to its north and
south (Schopf, 1979; Buss and Yund, 1989). Never-
theless, the MA population was collected from a site
near the Cape Cod Canal, which could readily allow
exchange among the populations. Much more work is
needed to fully understand the mechanisms involved
in making each copepod population resistant to toxic
Alexandrium.
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4.2. Toxic versus feeding deterrent effects

Both feeding deterrent and incapacitating effects
of Alexandriumsp. have been hypothesized to reduce
copepod feeding rates onAlexandrium(Huntley et al.,
1986; Ives, 1987; Uye and Takamatsu, 1990; Turner
et al., 1998). Several studies have found that copepods
that ingested toxicAlexandriumoften showed erratic
behavior and reduced ingestion (Huntley et al., 1986;
Ives, 1987; Uye and Takamatsu, 1990). Anecdotally,
we observed similarly described erratic behavior. Our
mixed diet experiments can be used to examine if the
reduction in the ingestion rates of the southern popu-
lations were caused by physiological incapacitation or
feeding deterrence. A feeding deterrence reduces in-
gestion rates when given as a sole food, but not when
given in a mixed diet (Huntley et al., 1986; DeMott
and Moxter, 1991; Turriff et al., 1995; Koski et al.,
1999; Teegarden, 1999; Engstrom et al., 2000; Colin
and Dam, 2002). In both experiments whereAlexan-
drium was mixed with non-toxicTetraselmis,the
ingestion rates on both the toxic and non-toxic com-
ponents of the diet decreased (Figs. 5 and 7). Further-
more, the copepods did not appear to select against
toxic Alexandrium. Hence, the results of the present
study we observed are not consistent with the feeding
deterrence hypothesis.

4.3. Toxic Alexandrium as a selective force

The documented accounts of grazer adaptation to
toxic Alexandrium, including this study and a study on
adapted populations of softshell clams (Bricelj et al.,
2000), suggest that toxicAlexandriummay exert se-
lective pressure on its grazers. Such selection may
be manifested by inducing physiological changes that
may alter demographics of a population and by in-
creasing grazer mortality (Travis, 1996). The results
of the present study provide direct evidence that the
presence of toxicAlexandriumhas the potential to al-
ter the demographics of a population by severely re-
ducing the egg production of non-resistant individuals
within the population. While we did not observe any
mortality in copepods feeding on toxicAlexandrium,
some toxic effects that are sub-lethal in laboratory set-
tings, such as physiological incapacitation, may have
lethal consequences under natural conditions by in-
creased vulnerability to predation (Newman, 1995).

5. Conclusion

We have found that geographically separate cope-
pod populations are affected differently by toxic
Alexandrium. These differences are consistent with
the hypothesis that some copepod populations have
adapted to the presence of toxicAlexandrium. The
present study may provide insight to help unravel the
disparity among studies examining the grazer–toxic
algal relationship (Turner et al., 1998). More impor-
tantly, this study demonstrates that historical exposure
and evolved resistance of zooplankton populations
are important determinants of whether some algae
are harmful to zooplankton grazers. Hence, grazer
adaptation will affect the fate of HABs and the fate of
toxins in marine food webs. Understanding the evo-
lution of grazer resistance is critical to understanding
and predicting the effects of the spreading of HABs
in marine systems.
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