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Abstract Entamoeba histolytica infects 50 million people
per year, causing 100,000 deaths worldwide. The primary
treatment for amoebiasis is metronidazole. However,
increased pathogen resistance combined with the drug’s
toxic side effects encourages a search for alternative
therapeutic agents. Secondary metabolites from marine
bacteria are a promising resource for antiprotozoan drug
discovery. In this study, extracts from a collection of
marine-derived actinomycetes were screened for antia-
moebic properties, and the activities of antibiotics echi-
nomycin A and tirandamycin A are shown. Both
antibiotics inhibited the in vitro growth of a E. histo-
Iytica laboratory strain (HM-1:IMSS) and a clinical iso-
late (Colombia, Col) at 30- to 60-uM concentrations.
EICsq (estimated inhibitory concentration) values were
comparable for both antibiotics (44.3—46.3 uM) against
the E. histolytica clinical isolate.

Electronic supplementary material The online version of this article
(doi:10.1007/s00436-012-3019-2) contains supplementary material,
which is available to authorized users.
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Introduction

Entamoeba histolytica, the causative agent of amoebic dys-
entery, is a parasitic contaminant of food, water, and soil.
Upon colonizing the intestine of a primate host, Entamoeba
cysts metamorphose into disease-causing trophozoites. The
parasite infects 12 % of the world’s population. Annually,
50 million patients require clinical treatment, and up to
100,000 cases result in mortality (Walsh 1986; Stanley
2003; Haque et al. 2003; Cotruvo et al. 2004, Ximénez et
al. 2009). Approximately 90 % of patients with mild to
moderate amoebic symptoms can be treated with metroni-
dazole or other nitroimidazole derivatives. Currently, luminal
amebicides (e.g., diloxanide furoate) are effective on intestinal
lumen trophozoites but not capable to reach tissue ameba
(Pritt and Clark 2008; Kenny and Kelly 2009); tissue amebi-
cides (e.g., metronidazole, dehydroemetine, chloroquine, and
nitazoxanide) are effective in the treatment of invasive ame-
biasis but not able to control luminal trophozoites (Pritt and
Clark 2008; Kenny and Kelly 2009). Close to 90 % of patients
with mild to moderate amoebic symptoms respond to metro-
nidazole and other nitroimidazole derivatives. Because of
misdiagnoses and asymptomatic carriers (host nonpathogenic
Entamoeba dispar instead of the infective E. histolytica) in
resource-limited countries, overtreatment with both drugs is
common (Pritt and Clark 2008). No clinical reports exist on
E. histolytica resistance to metronidazole; however, in vitro
metronidazole-resistant E. Aistolytica strains have been selected
(Wassmann et al. 1999). Resistance in hospital strains of 77i-
chomonas vaginalis, Giardia lamblia, as well as in anaerobic
bacteria (i.e., Clostridium sp. and Bacillus fragilis) has been
reported (Bendesky et al. 2002; Crowell et al. 2003; Ali and
Nozaki 2007). Although some toxic side effects, neurological,
reproductive, and potential carcinogenic concerns have been
reported for metronidazole and its derivatives (Bendesky et al.
2002), the strongest rationale for the search/design of novel
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antiamebic compounds is a drug that manages both invasive
and luminal amebiasis. Anaerobic pathogens have evolved
adaptive metabolic enzymes that differ from vertebrates, which
could be ideal targets of novel drug discovery and design (Ali
and Nozaki 2007).

Secondary metabolites produced by actinobacteria have
guided the development of numerous clinically used anti-
microbial agents (Bérdy 2005). Interestingly, the parent
compound of metronidazole, the nitroimidazole azomycin,
was isolated from Streptomyces eurocidicus in the 1950s
(Osato et al. 1955). In addition to their effectiveness as
antibacterial agents, actinomycete metabolites have recently
attracted attention as antiparasitic agents. A screening study
of 400 compounds isolated from soil-dwelling microbes
revealed the potent and selective antitrypanosomal activity
of ten structurally diverse metabolites (Otoguro et al. 2008).
Salinosporamide A, produced by the marine actinomycete
Salinispora tropica, strongly inhibits erythrocytic stages of
the of the human malaria parasite Plasmodium falciparum,
perhaps through interactions with the 20S proteasome
(Prudhomme et al. 2008).

Protistan grazing poses a significant environmental pres-
sure on marine bacterial communities, and recent evidence
supports that actinobacteria may not be as susceptible to
protists’ attack as other types of bacteria (Fenical and Jensen
2006). Chemical defenses may be partly responsible for
these findings. For example, the bacterial metabolite viola-
cein has been shown to reduce protozoan grazing (Matz et
al. 2004). These findings suggest that new antiamoebic
compounds can be identified from increased investigations
of microbial metabolites. In a search for such agents, we
recently undertook a screening of chemical extracts derived
from fermentations of actinomycetes isolated from marine
coastal sediments. Herein, we report the isolation and puri-
fication of two antibiotics, echinomycin A and tirandamycin
A, and their inhibitory effect on of E. histolytica tropho-
zoites in vitro.

Materials and methods

All reagents and solvents were purchased from Fisher Scientific
and were of analytical grade. UV spectra were recorded on a
DU 800 spectrophotometer (Beckman-Coulter), and IR spectra
were acquired on a Nexus 470 FT-IR (Thermo Nicolet). NMR
spectra were recorded on a Bruker Biospin spectrometer
(400 MHz for 'H, 100 MHz for '*C) and were referenced to
residual solvent signals with resonances at "H/'*C=§7.24/77.0
(CDCly). Electrospray ionization mass spectrometry was ac-
complished in 50:50 acetonitrile/water (+0.1 % formic acid) on
a Mariner© mass spectrometer (Applied Biosystems). High-
performance liquid chromatography (HPLC) was performed
using a Waters 600 pump and a 486 tunable absorbance
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detector using a Waters X-Terra® Prep RP18 column (5 mm
19x100 mm).

Marine actinomycete strain collection, cultivation,
and biological screening

A library of marine actinomycetes was isolated from marine
sediments collected in Fisher’s Island Sound, NY. Individual
strains were isolated using heat shock and desiccation methods
to select for Gram-positive bacteria (Ceri et al. 1999; LaPlante
and Rybak 2004; Thelaus et al. 2008). Pure colonies were
isolated on YP marine agar (1 g yeast extract, 5 g peptone,
15 gagar per 1 L of synthetic sea water (Instant Ocean; 36 g/L))
supplemented with cycloheximide to suppress fungal growth.
A total of 55 isolates that morphologically resembled Strepto-
myces and Micromonospora spp. were individually cultured in
1 L of yeast-peptone marine media. After approximately 5—
8 days of growth, cells were removed by filtration over Celite,
and culture broths were extracted with 500 mL ethyl acetate.
The resulting extracts were stored in dimethyl sulfoxide
(DMSO) at —20 °C and tested for inhibition of amoebic growth
(Espinosa et al. 2001, 2004, 2009) against E. histolytica HM-
1:1MSS (standard strain; Espinosa et al. 2001, 2004, 2009) and
E. histolytica Col [clinical isolate from a Colombian patient,
obtained from New York University (NYU), Dan FEichinger
Laboratory]. The extracts of two Streptomyces strains,
isolates URI-F11 and URI-F39, showed inhibitory activ-
ity in an in vitro trophozoite growth assay, and were
selected for further chemical investigation. Strain URI-
F11 was isolated from a marine sediment sample col-
lected from a depth of 12 m in Fisher’s Island Sound,
NY (41°17'00" N, 72° 2'11” W) and identified as a
Streptomyces sp. by 16S rRNA sequence comparison
(deposited with GenBank as accession no. JF939719,
Socha et al. 2007). Streptomycete strain URI-F39 strain
was isolated and identified as previously described
(Socha et al. 2009).

Purification and structure identification of tirandamycin
A and echinomycin A antibiotics

Strain URI-F11 was cultivated in 16 1-L cultures for 7 days
at 155 RPM and 24°C in YP marine broth. The cells were
removed by cheesecloth filtration, and the broth was parti-
tioned between ethyl acetate and H,O. The organic layer
was concentrated in vacuo to yield 800 mg. The extract was
separated by flash chromatography using a 20-100 % gra-
dient of methanol in H,O (HP-20-SS Diaion® resin,
Supelco). Reversed-phase HPLC of the 80 % methanol
fraction using 50-100 % acetonitrile in H,O yielded tiran-
damycin A (9.6 mg).

Tirandamycin was characterized by 'H and '*C NMR
spectral comparison to the literature values (MacKellar et
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Fig. 1 Chemical structures of a echinomycin A and b tirandamycin A

al. 1971). The UV and IR spectra were also identical to the
published values (Meyer 1971; Lee and Rinehart 1980). A
molecular weight of 418.2 [M+H]+124 confirmed the
structure. Echinomycin A was isolated from URI F39
strain as previously described (The NMR spectra for
tirandamycin A and echinomycin A corroborated their
chemical composition, Electronic supplementary material
Fig S1, Socha et al. 2009).

In vitro inhibitory assay

Trophozoites from E. histolytica HM-1:IMSS and E. histo-
Iytica Colombia (Col), isolated from a Colombian patient)
were cultured under axenic conditions in flat-bottomed
48-well plates containing 1.4 ml of Diamond’s TYI-S-33
medium as previously described (Espinosa et al. 2001, 2004,
2009). Trophozoites in log phase were used in all experiments.
Growth counts were averaged from three replicate wells and
three separate experiments. Amoebic cultures were closely
examined to verify absence of bacterial contamination in
tubes. To determine inhibition of E. histolytica growth, stan-
dard culture tubes containing an initial inoculation of 5x10°
trophozoites were grown for 48 and 72 h in TYI-S-33 (alone)
or supplemented with 30 uM echinomycin A, 30 uM tiranda-
mycin A, 60 uM echinomycin A, or 60 uM tirandamycin A,
and counted using a hemocytometer. Metronidazole at a con-
centration of 20 M was used as positive control of inhibition
(Espinosa et al. 2001, 2004, 2009). All test compounds were
dissolved in DMSO; a similar volume of DMSO was added to
control wells of ameba (data not shown) to discard toxicity
due to the solvent.

# Col Metronidazole 208M
HM1 Metronidazole 20uM

No of Amoeba x 108
[#+]

0 48 72
Time (hrs)

Fig. 2 Echinomycin A inhibits E. histolytica HM-1:1MSS and Col
trophozoite growth. An initial 5x10° HM-1:1MSS and Col E. histo-
Iytica trophozoites were inoculated per tube with TYI-S-33 media
alone (control) and plus inhibitor (echinomycin A or metronidazole)
and incubated at 37 °C for 48 to 72 h

Results

The growth inhibitory properties of pure echinomycin A
(Fig. la) and tirandamycin A (Fig. 1b) were measured
against E. histolytica HM-1:IMSS (Espinosa et al. 2001,
2004, 2009) and E. histolytica Col. The latter is a clinical
isolate derived from a Colombian patient (obtained from
NYU, Dan Eichinger Laboratory). Each compound
inhibited the growth of both E. histolytica strains at 30-
and 60-puM concentrations (Figs. 2 and 3). A 60-uM con-
centration of echinomycin A inhibited 71.1 and 67.6 % of
trophozoites, respectively (Fig. 2, Table 1). A 60-uM treat-
ment with tirandamycin A resulted in a slightly stronger

7 1
* Col Control
® HM1 Control »
6 1 # Col Tirandamycin 30 M
= HM1 Tirandamycin 300M
5 * Col Tirandamycin 60UM

HM1 Tirandamycin 60 pM
# Col Metronidazale 20 M
HM1 Metronidazole 20 M

No of Amoeba x 108
w

d 48 72
Time (hrs)

Fig. 3 Tirandamycin A inhibits E. histolytica HM-1:1MSS and Col

trophozoite growth. An initial 5x10°> HM-1:1MSS and Col E. histo-

Iytica trophozoites were inoculated per tube with TYI-S-33 media

alone (control) and plus inhibitor (tirandamycin A or metronidazole)
and incubated at 37 °C for 48 to 72 h
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Table 1 Effect of echinomycin A and tirandamycin on the growth of E. histolytica trophozoites (EICs, values for 48 and 72 h are also shown)

Concentration

No. of trophozoites < 10° (% inhibition in respect to controls)

Echinomycin A Tirandamycin Metronidazole
48 h 72 h 48 h 72 h 48 h 72 h
E. histolytica HM1:1MSS control 3.83 (NA) 6.33 (NA) 3.83 (NA) 6.33 (NA) 3.83 (NA) 6.33 (NA)
E. histolytica Col control 3.67 (NA) 6.17 (NA) 3.67 (NA) 6.17 (NA) 3.67 (NA) 6.17 (NA)
E. histolytica HM1:1MSS 35.6 uM* - - - 3.09 (50)° - -
E. histolytica Col 46.3 pM* - - - 3.16 (50)° - -
E. histolytica HM1:1MSS 42.2 uM?* - 3.09 (50)° - - - -
E. histolytica Col 44.3 pM* - 3.16 (50)° - - - -
E. histolytica HM1:1MSS 50 uM 3.75 (2.1) 2.25 (64.5) 3.0 21.7) 1.5 (76.3) ND ND
E. histolytica Col 50 uM 3.25(11.4) 2.25 (63.5) 3.0 (18.3) 2.25 (63.5) ND ND
E. histolytica HM1:1MSS 60 uM 3.0 21.7) 1.83 (71.1) 2.75 (28.2) 1.0 (84.2) ND ND
E. histolytica Col 60 yM 3.5 (4.6) 2 (67.6) 2.50 (31.9) 2.17 (64.8) ND ND
E. histolytica HM1:1MSS 20 pM ND ND ND ND 1.0 (73.9) 0.5 (92.1)
E. histolytica Col 20 uM ND ND ND ND 0.83 (77.4) 0.5 (91.9)

NA not applicable

*EICsy, estimated inhibitory concentrations of antibiotics required to inhibit 50 % amoebic growth

® Estimated no. of trophozoites x 10° killed by EICs,

inhibition, demonstrating a 84.2 % reduction in growth of E.
histolytica HM-1:IMSS and 64.8 % reduction in growth by E.
histolytica Col (Fig. 3, Table 1). EICs, values were comparable
for both antibiotics (44.3—46.3 uM) against E. histolytica Col
(Table 1). EICs is defined as the estimated inhibitory concen-
trations of drug required to inhibit 50 % amoebic growth.

Discussion

Secondary metabolites produced by marine actinomycetes
represent a promising resource for antiparasitic drug discov-
ery (Bérdy, 2005; Fenical and Jensen 2006; Otoguro et al.
2008; Prudhomme et al. 2008). This is the first investigation
of actinomycete metabolites in the context of amoebic infec-
tions. An intial testing of extracts from a panel of 55 marine
actinomycetes revealed the antiamoebic activity of echino-
mycin A and tirandamycin A against E. histolytica.
Echinomycin A is a potent antitumor and antibacterial
agent that exerts its activity via DNA bisintercalation (Waring
and Wakelin 1974). As such, echinomycin A has been shown
to inhibit vertebrate DNA replication, chromatin decondensa-
tion, and transcription (May et al. 2004). The antiamoebic
activity of echinomycin A could be due to the fact that amoeba
are highly metabolic cells, which replicate two to three times
per day (Ong and Wolfson, 1970; Austin and Warren 1983).
Echinomycin has been tested in mice against methicillin-
resistant Staphylococcus aureus peritoneal infections and
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shown an EDs of 0.5-1.3 mg/kg with little toxicity (Park et
al. 2008).

Tirandamycin A inhibits chain initiation and elongation
of bacterial RNA polymerase without acting on mammalian
polymerases (Reusser 1976). Three tirandamycins isolated
from Streptomyces sp. 17944 inhibited the parasitic nematode
Brugia malayi at 30-uM concentrations (Yu et al. 2011). The
antibiotics affected the Asparagine tRNA synthetase, which
suggests that the mechanism of action in E. histolytica could
be through affecting RNA-associated enzymes.

As compared to echinomycin A and tirandamycin A,
metronidazole is a more potent inhibitor of tropozoite
growth. However, toxic side effects and increasing metroni-
dazole resistance by parasitic microbes (Bendesky et al.
2002; Crowell et al. 2003; Haque et al. 2003; Ali and
Nozaki 2007) limit its clinical use. These results suggest
that both echinomycin A and tirandamycin A could be
pursued as alternative treatments for amoebiasis.
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