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ABSTRACT

Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies
in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to
optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust.

Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of
high visual extinction (A" > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location
of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples.

Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging
for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as
the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host’s stellar mass, luminosity,
color-excess, and star-formation rate.

Results. For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787+0.0005),
and the visual extinction towards GRBs 081109 (AGR® = 3.4*04 mag) and 100621A (AJR® = 3.8 + 0.2 mag), which are among the
largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the
afterglow’s metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average
redder (((R — K)ap) ~ 1.6 mag), more luminous ({L) ~ 0.9 L*), and massive ({log M.[Ms]) ~ 9.8) than the hosts of optically-bright
events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the massive and metal-rich
members. This also indicates that the dust along the sight-line is often related to host properties, and thus probably located in the
diffuse ISM or interstellar clouds and not in the immediate GRB environment. Some of the hosts in our sample, are blue, young, or
of low stellar mass illustrating that even apparently non-extinguished galaxies possess very dusty sight-lines owing to a patchy dust
distribution.

Conclusions. The afterglows and host galaxies of the dustiest GRBs provide evidence of a complex dust geometry in star-forming
galaxies. In addition, they establish a population of luminous, massive, and correspondingly chemically evolved GRB hosts. This
suggests that GRBs trace the global star-formation rate better than studies based on optically selected host samples indicate, and that
the previously claimed deficiency of high-mass hosts was at least partially a selection effect.

Key words. gamma-ray burst: general — dust, extinction — galaxies: star formation

1. Introduction

Long gamma-ray bursts (GRBs, see e.g., Zhang 2007; Gehrels
et al. 2009, for reviews) are linked to core-collapse super-
novae, hence star formation via the death of massive stars (e.g.,
Galama et al. 1998; Hjorth et al. 2003). At high redshifts,

* Based on observations made with GROND at the MPI/ESO 2.2 m
telescope and with telescopes at the European Southern Observatory at
LaSilla/Paranal, Chile under program 086.A-0533 and obtained from
the ESO/ST-ECF Science Archive Facility from programs 177.A-0591
and 078.D-0416.

** Visiting Astronomer at MPE.

Article published by EDP Sciences

where a significant fraction of star formation is thought to be
dust-obscured (e.g., Adelberger & Steidel 2000; Chapman et al.
2005), GRBs and their host galaxies provide independent means
of improving the understanding and preforming a full census
of star formation in the early Universe (e.g., Blain et al. 2000;
Ramirez-Ruiz et al. 2002; Berger et al. 2003): GRBs, having
luminous emission in a simple power-law spectrum provide
the ideal background light to illuminate dust-enshrouded star-
forming regions that would otherwise remain unexplored, while
at the same time pinpointing their host galaxies.

However, the extent to which GRB hosts provide an unbiased
picture of the formation of high-mass stars, and whether they
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preferentially occur in low-metallicity environments remains a
much debated issue (e.g., Le Floc’h et al. 2003; Fynbo et al.
2003; Tanvir et al. 2004; Fruchter et al. 2006; Kocevski et al.
2009; Campisi et al. 2011). In single progenitor models, metal-
poor stars are predicted to be more likely to explode as a GRB
(Woosley 1993; MacFadyen & Woosley 1999), as they would in
principle be able to retain a larger amount of angular momentum
at the time of stellar collapse because of the lower wind pres-
sures and losses throughout their evolution (e.g., Yoon & Langer
2005; Mokiem et al. 2007). However, binary progenitor chan-
nels might also play an important role in the formation of long
GRBs (e.g., Fryer et al. 1999), having somewhat relaxed metal-
licity constraints relative to single star progenitors (Fryer et al.
2007). Observations of GRB hosts are hence not only important
in a cosmological context, but provide relevant clues to the exact
nature of GRB progenitors.

A fundamental limit of hitherto available GRB host galaxy
samples is the incompleteness which arises from the non-
detection of the optical afterglow of a GRB (e.g., Groot et al.
1998; Fynbo et al. 2001). These optically dark bursts could be
caused by either high-redshift (e.g., Greiner et al. 2009; Tanvir
et al. 2009; Salvaterra et al. 2009; Cucchiara et al. 2011), large
column densities of dust (e.g., Klose et al. 2000, 2003; Tanvir
et al. 2008; Perley et al. 2011b) or an intrinsically fainter opti-
cal afterglow than the extrapolation of X-ray data when using
synchrotron emission theory, i.e., a decoupled optical/X-ray af-
terglow light-curve (e.g., Panaitescu et al. 2006; Ghisellini et al.
2009; Nardini et al. 2010). New afterglow samples have become
available since the advent of dedicated afterglow follow-up cam-
paigns on medium-to-large aperture telescopes (e.g., Fynbo et al.
2009a; Cenko et al. 2009; Greiner et al. 2011). These new after-
glow samples reach completeness levels of ~90% (Greiner et al.
2011) and helped ascertain the origin of dark bursts: around three
quarters of dark bursts are the result of a dusty afterglow line of
sight (e.g., Perley et al. 2009; Greiner et al. 2011). Accurate po-
sitions from afterglow observations are necessary to be able to
unambiguously associate galaxies with GRBs. The lack of opti-
cal/NIR afterglows for dark GRBs therefore creates a systematic
bias against the host galaxies of dusty GRBs in previous studies.

The sample of identified host galaxies is therefore not as
comprehensive as the most recent afterglow samples. It is instead
largely based on optically bright afterglows and consists mainly
of young and vigorously star-forming galaxies with sub-L* lu-
minosities and masses around 10° M, (e.g., Bloom et al. 1998;
Le Floc’h et al. 2003; Christensen et al. 2004; Fruchter et al.
2006; Michatowski et al. 2008; Savaglio et al. 2009, referenced
as SGLO09, hereafter). However, it remains unclear whether this
is a physical consequence of GRBs residing mainly in low-
metallicity environments, or is merely a selection effect: host
galaxies of dark GRBs were typically not identified, and hence
are under-represented in the available host sample.

Whether the physical characteristics of the hosts of optically
dark and bright GRBs are different is also the subject of discus-
sion. Previous sample studies (e.g., Berger et al. 2003; Le Floc’h
et al. 2003; Perley et al. 2009) have not revealed strong evidence
of a strong diversity. A handful of single dark GRBs have how-
ever been found to be hosted by red and dusty galaxies with high
metallicities and stellar masses over 10'! M, (e.g., Levan et al.
20006; Berger et al. 2007; Levesque et al. 2010; Hashimoto et al.
2010; Kiipcii Yoldas et al. 2010; Chen et al. 2010). Recently
Perley et al. (2010a, 201 1a) indicate that the general galaxy pop-
ulation hosting dark bursts is redder and more luminous than
those selected via optically bright afterglows.
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Fig. 1. Histogram of visual extinction values from previous afterglows
and those selected for this study. We note that five of the afterglows
in this work (GRBs 070802, 080605, 080607, 080805, 090926B) were
already discussed in previous sample studies, but are only included in
one of the histograms for clarity.

In this paper, we study the nature of GRB hosts that
previously escaped detection because of the dust bias, hence
are exemplary of those missing from demographic studies.
We avail ourselves of dedicated GRB afterglow campaigns of
high completeness to preselect the GRB hosts for this study.
These afterglow data do not only provide accurate positions
for host identifications, but for the first time allow us to di-
rectly select dust-extinguished (and not only optically faint)
GRBs using well-sampled broad-band (NIR to X-ray) afterglow
observations.

After selecting afterglows with visual extinctions ex-
ceeding unity, we search for the associated hosts with the
Gamma-Ray Optical and Near-infrared Detector (GROND,
Greiner et al. 2008), as well as the ESO Very Large and New
Technology Telescopes (VLT and NTT, respectively) and the
Ultra-Violet Optical Telescope (UVOT, Roming et al. 2005) on-
board the Swift satellite (Gehrels et al. 2004).

The acquired data allow us to study the physical properties of
the hosts of high-AJ®® GRBs in detail, and to investigate the bias
against dust in GRB host samples. As an ultimate consequence,
they address the role of GRB host galaxies as tracers of galaxy
formation and evolution. Furthermore, they link afterglow di-
agnostics, i.e., detailed information about a single sight-line, to
integrated host characteristics, and in this combination directly
probe the nature of dust and its properties in high-redshift, star-
forming galaxies.

Throughout this work, we adopt the convention that the flux
density of the afterglow F,(v,t) can be described as F,(v,1) o«
v 1@ and assume concordance (Qy = 0.27, Qn = 0.73,
Hy =71 kms™' Mpc™') ACDM cosmology. All errors are given
at 1o confidence levels unless indicated otherwise. All magni-
tudes and colors are given or converted into the AB system.

A GRB

2. Sample selection

The host galaxy sample presented in this work is based on
a direct measurement of large visual extinction along the
GRB line of sight (AS®® > 1mag) from multi-color (NIR


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117428&pdf_id=1

T. Kriihler et al.: The SEDs and host galaxies of the dustiest GRB afterglows

to X-ray) afterglow observations. Specifically, eight GRB af-
terglows (GRBs 070306, 070802, 080605, 080607, 080805,
081109, 090926B, and 100621A) fulfill the selection criterion
and define our initial host sample. Our host sample is a direct re-
sult of afterglow observations. The selection itself is hence nei-
ther limited by galaxy brightness, nor introduces a bias towards
luminous galaxies in our sample. Afterglow measurements for
the initial selection have been obtained from the literature or
by analyzing photometric optical/NIR data from the GROND
archive. In the latter case, they are detailed in Sect. 3.1.

Our eight GRBs have a median redshift of (z4,) = 1.5.
This is significantly lower than the published mean of Swift
GRBs with measured redshifts ((zswiz) = 1.9, Fynbo et al.
2009a'), but higher than the one of the previous host sam-
ple ({zsgLov) = 0.96 from SGLO09), which includes a large
number of pre-Swift events. Within the selected eight after-
glows, four of them display a clear 2175 A dust feature (GRBs
070802, 080605, 080607, 080805), which is with the exception
of GRB 080603A (Guidorzi et al. 2011; Kann et al. 2011) the
full sample for which a significant detection of this feature has
been reported to date (e.g., Zafar et al. 2011). The 2175 A feature
was indeed undetectable for the rest of the sample because of
the combination of a large dust column, and insufficiently deep
and rapid follow-up observations in the case of GRBs 070306
and 090926B, or a lack of observational wavelength coverage at
2175 A x (1 + z) (GRBs 081109, 100621A).

While observationally challenging, the requirement of a dust
measurement has several obvious advantages over a selection
based on the optical-to-X-ray flux ratio (B,x, see e.g., Jakobsson
et al. 2004; Rol et al. 2005; van der Horst et al. 2009). Most im-
portantly, the selection is the result of a measurement rather than
an extrapolation and provides a clean selection of dusty GRBs,
that is our afterglows are chosen according to their visual ex-
tinction instead of their optical faintness alone. Optically faint
events could of course also be at high-z or have different emis-
sion mechanisms in the optical and X-ray regime.

We note that our selection is still somewhat model-
dependent, particularly we assume that the afterglow emits syn-
chrotron radiation in the optical/NIR and X-ray regime. Despite
the lack of conclusive alternatives to the standard synchrotron
fireball model, there are still features in well-sampled multi-
color light curves which remain hard to explain. These features
include for example chromatic? breaks, optical and/or X-ray
flares, or plateaus (e.g., Panaitescu et al. 2006; Covino et al.
2008; Evans et al. 2009; Kriihler et al. 2009; Oates et al. 2011,
also illustrated in Fig. 3). The apparently decoupled optical and
X-ray light curve for some bursts results in a strong dependence
of Box on the time of the observation (which in fact is directly
observed in some cases, see e.g., Filgas et al. 2011), hence the
dark-burst definition depends on observational constraints and
not only physical properties.

In addition, the detection of an optical and/or NIR afterglow
yields the GRB position to sub-arcsec accuracy, and hence negli-
gible chance-coincidence probabilities for field galaxies, which
is particularly important for samples of small size as in this work.
For all events, a spectroscopic redshift is available from the lit-
erature, or could be obtained via host-galaxy spectroscopy. This
enables quantitative studies, such as the comparison between

! Including updates from http: //www.mpe .mpg.de/~jcg/grbgen.
html and http://www.raunvis.hi.is/~pja/GRBsample.html

2 Chromatic light-curve breaks are breaks in the X-ray regime not as-
sociated with contemporaneous breaks in the optical/NIR bands, and
vice versa.

specific sight-lines and host-integrated properties, as well as an
investigation of the relation of the dusty hosts to the host sample
of SGL09.

Owing to the inherent difficulties in accurately localizing
high-AS’RB afterglows, most previous afterglow samples are bi-
ased towards small visual extinctions. This is illustrated in Fig. 1,
which compares the visual extinction of GRBs selected for this
work to previously compiled ASRB values. The latter were taken
from Kann et al. (2006, 2010), Schady et al. (2010), Greiner et al.
(2011), and Zafar et al. (2011).

3. Observations
3.1. Afterglows

Optical and near-infrared measurements of the afterglows of
GRBs 070306, 070802, 080605, 080607, 080805, and 090926B
or results thereof are taken from Jaunsen et al. (2008), Kriihler
et al. (2008), Perley et al. (2011b), Greiner et al. (2011), and
Zafar et al. (2011), respectively. GROND observations of the af-
terglows of GRB 081109 and GRB 100621A are not presented
elsewhere and are briefly described in the following.

3.1.1. GRB 081109

Swift triggered on GRB 081109 (Immler et al. 2008), and
X-ray and NIR detections of the afterglow were reported by
Beardmore et al. (2008) and D’Avanzo et al. (2008) soon af-
terwards. GROND observations were performed in seven opti-
cal/NIR filters (¢'r'i'z’ JHK) simultaneously and started 17.1
hr after the GRB trigger (Clemens et al. 2008b). A preliminary
analysis of the spectral energy distribution (SED) revealed sig-
nificant reddening of the optical/NIR afterglow (Clemens et al.
2008a). Observations of the transient with GROND continued
at 2, 3, 6, and 378 days after the trigger, where the host bright-
ness was derived from the last epoch. The GROND afterglow
and host measurements are given in Table 1, and Tables 3, and
4, respectively. A possible host galaxy was also reported in the
UVOT white filter (Kuin & Immler 2008). High-energy prompt
and afterglow data, early NIR imaging, and a light curve and an
X-ray spectral analysis of this burst are presented by Jin et al.
(2009).

3.1.2. GRB 100621A

GROND reacted immediately (Updike et al. 2010) to the Swift
trigger of GRB 100621A (Ukwatta et al. 2010b) taking the
first images 230 s after the burst. Simultaneous imaging in
g'r'i'7 JHK; continued for 3.05 h, and was resumed on nights 2,
4, and 10 after the burst. Analysis of the Swift/X-ray data and ad-
ditional detections of the NIR afterglow were reported by Stratta
et al. (2010) and Naito et al. (2010), respectively. Early GROND
data found evidence of substantial reddening and host emission
dominating the flux in the bluest filters, which was also seen by
Swift/UVOT (Oates & Ukwatta 2010). Afterglow and host mea-
surements are again shown in Tables 1, 3, and 4. The temporal
evolution of the optical/NIR afterglow is complex with a very
steep increase in brightness of around 1.5 mag in the J band
from 3.5 to 4.5 ks after the trigger. The light curve is hence very
similar to the one of GRB 081029 (Nardini et al. 2011), where an
analogous behavior could be associated with the intrinsic prop-
erties of the GRB and not to changes in the intervening dust con-
tent. For completeness, the J-band light curve of GRB 100621 A
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Fig. 2. GROND H-band light curve of the afterglow of GRB 081109.
The time interval used to extract a simultaneous, host-subtracted after-
glow SED from the GROND and Swift/XRT data is indicated with a
grey-shaded area and labeled with 1.
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Fig.3. GROND J-band light curve of the afterglow of GRB 100621A.
The time intervals used to extract simultaneous, host-subtracted after-
glow SEDs from the GROND and Swift/XRT data are indicated with
grey-shaded areas and labeled with I and II.

is shown in Fig. 3, but its detailed modeling and interpretation is
beyond the scope of this paper.

3.2. Hosts

Once the sample based on afterglow host extinction was defined,
late follow-up observations were initiated first with GROND,
and in the case of non-detections in individual filters, were
continued with telescopes of successively increasing aperture
size, specifically with EFOSC/SOFI at the NTT (4 m class) and
FORS2/HAWKI at the VLT (8 m class). In one case without
published redshift (GRB 081109), the photometric imaging was
complemented by low-resolution spectroscopy with FORS2.
Public VLT data for known hosts (GRBs 070306 and 070802)
were obtained from the ESO archive. Ground-based data were
complemented by Swift/UVOT imaging for GRBs 081109 and
100621A. In the case of GRB 080607, all host measurements
were taken from Chen et al. (2010, 2011).
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4. Data reduction and SED fitting
4.1. Swift/XRT & UVOT data

X-ray data were retrieved from the HEASARC archive3, and re-
duced with the xrtpipeline task. Spectra were grouped to yield a
minimum of 20 counts per bin, while the light curve was taken
from the Swift/XRT light curve repository (Evans et al. 2007,
2009). Swift/UVOT photometry was derived following Poole
et al. (2008) and is presented in Table 2.

4.2. Ground-based optical/NIR photometry

All optical (GROND, EFOSC, FORS1/2) and near-infrared
(GROND, SOFI, HAWK-I, ISAAC) imaging was reduced in a
standard manner using pyraf/IRAF (Tody 1993) similar to the
procedure outlined in Kriihler et al. (2008). For afterglow and
host photometry, point-spread function (PSF) fitting and aper-
ture photometry was used, respectively. The aperture diameter
for individual hosts ranges typically between 1.0”” and 2.5”, cor-
responding to values between 1.5 to 4 times the PSF FWHM. It
was chosen to be sufficiently large to include the largest fraction
of host flux, and given the typical extent of these galaxies (<17,
i.e., <8.5kpc at z ~ 1.5), the fraction of missed low-surface
brightness emission is very likely not to be a major contribution
to the presented measurements.

The PSF and aperture photometry was then flux calibrated
using GROND observations of SDSS fields (Abazajian et al.
2009) taken immediately before or after the GRB field for the
optical g’r'i’7’ filters. BVRI photometry was obtained by creat-
ing a set of 20—30 secondary standards from the GROND pho-
tometry of field stars and the color terms from Lupton*. The U-
band photometry was tied to observations of Landolt standard
stars (Landolt 1992) taken during the same night at different air-
masses, which allowed a reliable correction of the atmospheric
extinction to be applied.

NIR photometry of our afterglows and hosts was cali-
brated with respect to 20—60 point sources in the 2MASS cat-
alog (Skrutskie et al. 2006) in the 10" x 10" field of view of
GROND. The zeropoint for the NIR imagers with smaller field
of views (in particular SOFI and ISAAC) was then derived us-
ing 3—10 secondary standards common to the GROND and
SOFI/ISAAC/HAWK-I frames. The HAWK-I Y-band imaging
was measured using the 7' and J-band photometry from field
stars using the color term

Y =0.05+0463x(z—J)+ J,

where all magnitudes are in the AB system. This color term was
derived from synthetic photometry of stars with the templates
of Pickles (1998) and Chabrier et al. (2000), and yields an rms
residual scatter for individual stars of 0.07 mag.

This procedure resulted in typical absolute accuracies of 2—
5% for the optical (U to 7) filters and 4—8% in the NIR (Y JHK),
which were added in quadrature to the error introduced by pho-
ton noise. All data used in the analysis were corrected for the
expected Galactic foreground extinction according to Schlegel
et al. (1998) with Ry = 3.08. For the selected fields, this cor-
rection is small, i.e., Eg_y < 0.15mag in all cases. The un-
certainty of about 10% in the Galactic foreground correction

3 http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/
swift.pl

4 http://www.sdss.org/dr7/algorithms/
sdssUBVRITransform.html
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Table 1. Afterglow photometric measurements.

GRB At [ks] g r i’ 4 J H K,
081109 65 >24.53 >24.75 23.6(4) 22.8(3) 21.24(17) 19.78(11)  18.83(08)
100621A 7.6 21.56(17) 19.92(08) 18.67(06) 17.71(04) 16.02(04) 15.02(05) 14.32(06)

Notes. At is the mean time of the observation after the GRB trigger. All magnitudes are in the AB system and uncorrected for Galactic foreground
reddening. Values in brackets correspond to photometric errors in units of valid digits. Upper limits are given at 30~ confidence.

Table 2. Swift/UVOT UV (uvw?2 to u) photometric measurements of GRB hosts.

Host uvw?2 uvm?2 uvwl u
GRB 081109 >24.1 23.6(3) 23.4(3) >22.9
GRB 100621A  22.31(04) 22.23(06) 22.20(07) 21.95(06)

Notes. All measurements in the AB system and uncorrected for the Galactic foreground reddening. Values in brackets correspond to photometric

errors in units of valid digits. Upper limits are given at 30~ confidence.

Table 3. Optical (U to z') photometric measurements of GRB hosts.

Host U g % r R 4 1 4
GRB 070306 — 22.90(09) — 23.08(09) 23.00(09) 22.81(13) — 22.86(17)
GRB 070802 — — — — 25.20(09)  25.5(3) — —
GRB 080605 — 23.15(07) — 22.82(07) — 22.831(08) — 22.76(11)
GRB 080805 — — 25.7(2) — 25.5(2) 25.7(4) — —
GRB 081109 23.23(14)  23.07(07) 22.85(06)  22.74(07) — 22.01(08) 21.96(09)  21.99(09)
GRB 090926B  23.71(13)  23.31(07) — 22.96(06) — 22.92(12) — 22.44(10)
GRB 100621A  21.95(10) 21.86(06) — 21.43(06) — 21.15(06) — 21.46(06)

Notes. All magnitudes in the AB system and uncorrected for the Galactic foreground reddening. Values in brackets correspond to photometric
errors in units of valid digits. Upper limits are given at 30~ confidence. Data for the host of GRB 080607 were taken from Chen et al. (2010, 2011),

and are not shown in the table.

Table 4. NIR (Y to K) photometric measurements of GRB hosts.

Host Y JGroND J Hgronp H Kcronp K
GRB 070306 = 31.9(4)  21.62008)  21.5(4)  2120(12) >21.1  21.38(10)
GRB 070802 _ _ 24.5(3) — _ _ 23.4(3)
GRB 080605 — 21.9(2) — 22.3(3) — >21.1 —
GRB 080805 _ _ 23.6(2) — _ —_ 23.1(2)
GRB 081109 21.63(08) 21.40(17) 21.37(06) 21.5(4) — >20.6  21.05(08)
GRB 090926B — 223(4)  2188(13)  >21.6  2193)  >209 21.44(19)
GRB 100621A  21.10(06) 21.22(10) 21.43(06) 21.18(14) — >21.1 21.23(11)

Notes. All measurements are given in the AB system and are uncorrected for the Galactic foreground reddening. Values in brackets correspond to
photometric errors in units of valid digits. Upper limits are given at 30~ confidence.

does therefore not affect the overall results of this work. Ground-
based photometric measurements of the afterglows and hosts are
shown in Tables 1, 3, and 4, respectively.

4.3. Long-slit spectroscopy

In addition to the photometric observations, the host of
GRB 081109 was also observed spectroscopically with FORS2
(Appenzeller et al. 1998) at the VLT. In total, 2 x 1200 s spec-
tra were obtained with the grisms 300V and 300/ and a long-slit
width of 1.6”. Acquisition images were taken in the V and [ fil-
ters. The spectroscopic data were obtained at airmasses of ~1.1
and seeing of 0.9”, which results in a line-spread function of
approximately 1.9 nm at 570.0 nm.

The data were reduced using standard procedures in
pyraf/IRAF, with the wavelength solution obtained against an
HeHgCd arclamp exposures with 25 lines leaving residuals of

around 0.07 nm rms. Flux-calibration was performed against
the spectrophotometric standard BPM16274°. The wavelength-
and flux-calibrated spectrum was corrected for Galactic fore-
ground extinction and renormalized to the available braod-band
photometry.

4.4. SED fitting
4.4.1. Afterglows

For the afterglow SED analysis, X-ray (0.3—10 keV) and opti-
cal/NIR data were fit together under the assumption that the un-
derlying continuum emission is well-represented by synchrotron
emission (e.g., Sari et al. 1998; Galama & Wijers 2001; Schady
et al. 2007; Rossi et al. 2011a).

> http://www.eso.org/sci/observing/tools/standards/
spectra/bpml6274.html
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Rest-frame soft X-ray photons are absorbed by metals, pre-
dominantly a@-chain elements, while UV over optical to NIR
wavelengths are decreasingly affected by dust absorption. Good
coverage above 1 keV combined with NIR observations allows
for an accurate determination of the continuum, and hence good
constraints on the dust abundance (represented by the absorp-
tion in the rest-frame, optical V-band, AGR®), the extinction law
and total metal content (converted into a hydrogen-equivalent
column density Ny x assuming solar abundances from Anders
& Grevesse 1989) along the line of sight. In particular, sin-
gle and broken power-law continua were used, where in the
latter case the two power-law slopes 8; and 3, were fixed to
yield 81 + 0.5 = B, as expected for the cooling break of syn-
chrotron emission in the slow cooling regime (e.g., Sari et al.
1998; Granot & Sari 2002).

The NIR to X-ray SEDs were fitted in X-spec (Arnaud 1996)
using extinction laws for the Milky Way (MW), and both Small
(SMC) and Large (LMC) Magellanic Clouds from Pei (1992).
For the GROND photometry, measurements from the time frame
indicated in Figs. 2 and 3 were used, where we chose interval
IT for GRB 100621A owing to the higher signal-to-noise ratio
of these data. Data taken at interval I yield consistent results for
ASRB and Ny x. In the X-ray regime, where spectral changes in
the late evolution of an afterglow are typically very moderate
or in most cases even completely absent, the full XRT data set
with a constant hardness ratio was used to create a time-averaged
spectrum. The latter was then rescaled to the flux value at the
time of the GROND observations derived from fitting the XRT
light-curve with simple afterglow models. The early steep decay
of the X-ray light curve and epochs of flaring activity were ex-
cluded from the combined spectrum as well as the light-curve
fitting.

4.4.2. Hosts

The UV/optical/NIR photometry of the hosts of the selected
GRBs were analyzed in a standard way using stellar popula-
tion synthesis (SPS) techniques to convert luminosities into stel-
lar masses M., (e.g., Bell et al. 2003; Ilbert et al. 2010) within
LePhare®. In detail, 3 x 10° galaxy templates based on models
from Bruzual & Charlot (2003) with a universal IMF (Chabrier
2003) and different ages, star formation histories, extinction
laws, reddening values and metallicities were fit to the data. In
addition, emission lines were taken into account by converting
the de-reddened UV luminosity into a star formation rate, and
line strengths of Ly-a, H,, Hg, [OII], and [OIII], which were
determined following Kennicutt (1998) and Ilbert et al. (2009).
In particular, for vigorously star-forming galaxies such as GRB
hosts, this effect is a significant contribution to even broad-band
photometry (e.g., Watson et al. 2011) and reaches values of up
to ~0.2—-0.3 mag (Ilbert et al. 2009). To permit a direct compari-
son with results published in the literature (e.g., Fontana et al.
2006; Marchesini et al. 2009; Ilbert et al. 2010, SGL09), we
used the attenuation law of Calzetti et al. (2000) derived for star-
burst galaxies in the fitting, unless different reddening laws pro-
vided a closer fit to the host data at 90% confidence. We caution
that access to the rest-frame NIR, which enables the most reli-
able measurement of the stellar mass M, of a galaxy (see e.g.,
Castro Ceron et al. 2010, and references therein), is somewhat
limited for part of the sample. However, all hosts are detected in
at least one filter redwards of the 4000 A break, which allows a

6 http://www.cfht.hawaii.edu/~arnouts/LEPHARE
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Fig.4. Comparison of stellar masses from the host sample of SGL09.
The plot shows host masses derived from the photometry compiled in
SGLO09 and following Sect. 4.4.2 with models from Bruzual & Charlot
(2003) against values directly taken from SGLO09. Error bars are the
maximum and minimum values of the stellar mass in the global y?-
distribution of 3 x 10° galaxy templates (see Sect. 4.4.2). The solid lines
represents equality, and the dashed line the median offset. Increasingly
gray shaded areas indicate dispersions of 0.2, 0.5, and 1.0 dex, respec-
tively. The inset shows the distribution of mass differences, which has a
median of around 0.2 dex.

reasonable estimate of M, for a galaxy (e.g., Glazebrook et al.
2004; Ilbert et al. 2009, SGL09).

Systematic uncertainties of up to an average of 0.2—0.3 dex
in M, are caused by the specific details of the stellar popula-
tion models and the assumed attenuation/extinction law (Pozzetti
et al. 2007; Kiipcii Yoldas et al. 2007; Kajisawa et al. 2009; Ilbert
et al. 2010). Despite the small sample size of GRB hosts, there
is evidence for an offset of around 0.2 dex between the presented
method and the one of SGL09 as shown in Fig. 4. In the follow-
ing, the recalculated stellar masses of the long GRB hosts with
the photometric data compiled in SGL09 are used as a compari-
son sample.

The SPS fit returns not only the luminosity and mass of the
galaxy, but also other physical properties of the host, such as the
age of the dominant stellar population 7, its color-excess Ez-v),
and the star-formation rate (SFR) derived from the rest-frame
UV flux. Reported physical host properties are the median of the
probability distribution of the total grid over all galaxy templates
at the fixed spectroscopic redshift. Errorbars represent the max-
imum and minimum values of the respective parameter in the
global y?-distribution of the multi-dimensional parameter grid.
Typically, errors are asymmetric and dominated by the uncer-
tainty in the color excess in the host galaxy, which results in log-
arithmic errors in all galaxy parameters. Absolute magnitudes
and masses are compared with the redshift-dependent galaxy lu-
minosity (Willmer et al. 2006; Marchesini et al. 2007) and stellar
mass functions (Marchesini et al. 2009; Ilbert et al. 2010)

5. Results
5.1. Afterglow extinction and metal-to-dust ratios

Of the total of eight afterglows in the sample, the extinction
properties of five of them (GRBs 070802, 080605, 080607,
080805, 090926B) were extensively discussed in previous stud-
ies (Kriihler et al. 2008; Elfasdottir et al. 2009; Perley et al.
2011b; Greiner et al. 2011; Zafar et al. 2011). In these cases,
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Table 5. Afterglow properties.

Afterglow Redshift®  Top™  Bop™ Bx AGRB Nux x?/d.of.
[s] [mag] 10?cm™2
GRB 070306 1496 2109 1.00  1.00 +0.07 5.512 25753 123/108
GRB 07080249 2452 1649 0.60 L10%00 1.23*918/1.19 £ 0.15 2.0%07/< 2.9 15/14
GRB 080605 1.640 209 0.67  0.67+0.001 0.47=0.03/1.207%  1.01799/0.71 +0.08  428/327
GRB 080607 3.036 79® 096  0.96%0% 3.3 +0.3/2.334 2.7+08/3.8+02 70/39
GRB 080805 1.505 78™ 047  097+005 1.017019/1.53+0.13 1.0799/1.2+54 23/18
GRB 081109 0.979 1909 1.10 1.12#002 3.4704 1.10%013 48/63
GRB 090926B® 1.24 1109 0.73 0.73j§f§§ 1.4f§fz 2.2t§;§2 33/31
GRB 100621A 0542 6360 079 1.29*011 3.8+02 162101 138/124

Notes. Afterglow measurements were taken from the reference denoted with the superscript in the first line. When two references are given, we

quote both values for ASRB

and Ny x, but values for 8 and y? only from the first one for the sake of clarity. * Redshifts from Jaunsen et al. (2008),

Eliasdéttir et al. (2009), Fynbo et al. (2009a), Fynbo et al. (2009b) and Milvang-Jensen et al. (2010). **) Ty, is the duration in which the GRB
emits from 5% to 95% of its y-rays, and is used to discriminate between short and long bursts. Typically, long GRBs have Tqy > 2 s (Kouveliotou
et al. 1993). All GRBs in this work are hence unambigously long events. *** B, is tied to By in the fitting, and hence has the same error.

References. (a) Barthelmy et al. (2007), (b) Greiner et al. (2011), (c) Zafar et al. (2011), (d) Cummings et al. (2007), (¢) Cummings et al. (2008),
(f) Perley et al. (2011b), (g) Stamatikos et al. (2008), (h) Palmer et al. (2008), (i) Markwardt et al. (2008), (j) Baumgartner et al. (2009), (k)

Ukwatta et al. (2010a).

the published afterglow analysis is comparable to the approach
adopted in this work, and its description is therefore not re-
peated here, with results from the literature being summarized in
Table 5. For the remaining three events (GRBs 070306, 081109,
100621A), we present either new data and their modeling (GRBs
081109, 100621A), or a new analysis (GRB 070306) in the fol-
lowing.

The afterglow of GRB 070306 was discussed in Jaunsen et al.
(2008). As their analysis differs significantly from our approach,
we refit the available afterglow data following Sect. 4.4.1. The
broad-band SED in Fig. 5 is reasonably well fit (y> = 123/108
d.o.f.) with a single power-law continuum of spectral index
B 1.00 = 0.07, an AS’RB = 5.51:5 mag, and an Nyx
2.5f83 x 1022 cm™2 at 90% confidence, which implies a metal-
to-dust ratio of Ny x/ASRE = 4.4 x 10?! cm™~?/mag. Given the
redshift of z = 1.496, and the sparse wavelength coverage in the
NIR (probing the rest-frame optical redward of 400 nm, where
there is little distinction between local extinction laws), all local
dust models of course provide equally good fits to the data, and
within errors compatible values of 8, AGRE, and Ny x. No strong
statements can be made about the presence of a break between
the NIR and X-ray data. We adopt the model with the least num-
ber of free parameters (single power-law continuum, which also
yields the lowest /\{2), but note that in the case of a break be-
tween the two wavelength regimes (as seen in most early GRB
afterglows, Greiner et al. 2011) the fit is of comparable quality
(Ax* = 3), and yields a best-fit AGR® that is significantly lower
(ASRB = 4.3*1- mag), but within the errors consistent with the
single power-law values.

The afterglow SED for GRB 081109 at z = 0.979 was con-
structed from GROND and Swift data and is shown in Fig. 6.
After subtraction of the late host epoch, no residual flux was
detected in the two bluest GROND filters ¢’ and #’. The after-
glow was detected in all five redder bands, which implies an ex-
tremely red color of (R — K)ag = 6 mag and B,x < 0.44. The
combined GROND and XRT data are closely fitted with a sin-
gle power-law continuum, indicating that both the optical/NIR
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Fig. 5. NIR to X-ray SED of the afterglow of GRB 070306 obtained ap-
proximately 120 ks after the trigger in the observer’s frame. The dashed
line shows the unabsorbed synchrotron continuum emission while the
best-fit model (including dust and metal absorption) is shown by solid
lines. Upper limits are shown by downward triangles.

and the X-ray regimes probe the same part of the synchrotron
spectrum. The obvious curvature in the GROND data is accu-
rately described with either of the local dust models, with best-
fit parameters of AGR® = 3.4*09mag, B = 1.12 + 0.02, and
Nux = (1.1 £0.1) x 1022 cm™2 at 90% confidence and a y?
of 48.1 for 63 d.o.f. in a MW-like extinction law. The SMC and
LMC models yield within the errors comparable parameters and
provide equally good fits to the data (y*s of 48.2 and 48.8, re-
spectively).

The SED of the afterglow of GRB 100621A at z = 0.542
(Milvang-Jensen et al. 2010) is shown in Fig. 7. As for the SED
of GRB 081109, there is strong curvature and obvious redden-
ing in the optical/NIR part of the SED. The inferred ultra-red

A108, page 7 of 17


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117428&pdf_id=5

A&A 534, A108 (2011)

Observed wavelength [nm]

1000 100 10 1
18
102
20
1 =
B 10 99 %5
B =S
= 100 24 %
S g
e £
101 %%
&
) oy 28
10~
30
1073 1072 107! 100

Observed energy [keV]

Fig. 6. Same as Fig. 5 for the afterglow of GRB 081109 obtained ap-
proximately 60 ks after the trigger.

color of (R — K)ap ~ 5.8 mag, and the SB,x value of 0.39
provide evidence of strong dust extinction. The best-fit solu-
tion is obtained with a broken power-law with spectral indices

B1=P2—0.5=0.79"011. as well as AGR® = 3.8 +0.2 mag for an

LMC-like extinction law, and Ny x = (1.62+0.15)x 10?2 cm2 at
90% confidence (> of 138 for 124 d.o.f.). Given the rest-frame
wavelength coverage of ~300—1500 nm, all local dust models
return comparable values with ASRB values of 3.8 + 0.2 mag for
an SMC- and 4.0 + 0.2 mag for a MW-type extinction law. All
data bluewards of and including the ' filter are consistent with
these extinction laws, while the g’-band photometry is somewhat
(2-30) brighter than the best-fit model predicts. This could in-
dicate a discrepancy between the details of the specific dust ex-
tinction law and local models similar to that observed e.g., in
GRBs 070802 or 080607 (Eliasdéttir et al. 2009; Perley et al.
2011b).

The visual extinctions of GRBs 070306, 081109, and
100621A are among the largest ever measured directly along
GRB sight-lines, and imply metal-to-dust ratio of Ny x/AGR® ~
(3-5) x 10?! cm~2/mag. Compared to previous afterglow mea-
surements, these Ny x /AS’RB values are relatively low, and within
a factor of 2-3 similar to Ny /Av as observed in the SMC, LMC,
and MW (see also Sect. 6.4). The results of afterglow SED fit-
ting, as well as values taken from the literature, are summarized
in Table 5.

5.2. Host properties
5.2.1. The host of GRB 070306

The galaxy hosting the strongly extinguished GRB 070306 at
z = 1.496 was previously discussed in Jaunsen et al. (2008).
In addition to the public VLT imaging data (FORS R, ISAAC
JoHK), the host of GRB 070306 was observed with GROND
(g'r'i'7 JHK, simultaneously), and its SED (Fig. 8) was comple-
mented with published u# and /-band data (Jaunsen et al. 2008).
The host is bright (+* = 23.1 mag), mildly red’ with (R — K)ap ~
1.5 mag, and shows evidence of a Balmer/4000 A break. The

7 We compare GRB host colors with the median (R — K)sp = 0.8 mag
color from the SGL09 sample.
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Fig.7. Same as Fig. 5 for the afterglow of GRB 100621A obtained ap-
proximately 7.6 ks after the trigger.

data are closely fit with a non-extinguished (Aj, < 0.6)% host
template, and yield an absolute AB magnitude of My = -22.4 +
0.1 mag, which, at z ~ 1.5, corresponds to ~1.7 L*. The stellar
mass of log(M.[My]) = 10.4 + 0.2 places the galaxy among
the most massive hosts compared to the sample of SGL09.
The star-formation rate estimate based on the rest-frame UV
flux is 13:&1 Mo /yr, which gives a specific star formation rate
(SSFR = SFR/M.) of ~ 0.5 Gyr™!, or growth timescale (i.e.,
1/SSFR) of 2 Gyr. The SFR is in reasonable agreement with the
one derived from the [OII] emission line (Jaunsen et al. 2008).
We note, that the ISAAC H-band host image was obtained only
2.5 days after the GRB, hence very likely contains a significant
fraction of afterglow light, explaining the blue H — K color. The
physical properties of the host, however, are comparable when
determined with or without using the ISAAC H-band data.

5.2.2. The host of GRB 070802

The host of GRB 070802 at z = 2.452 was discovered in deep
FORS R and ISAAC K band imaging (Eliasdéttir et al. 2009).
The afterglow SED is characterized by a prominent 2175 A dust
feature, and significant dust in the range of Ay ~ 1 mag (Kriihler
et al. 2008; Elfasdéttir et al. 2009). To construct the optical/NIR
host SED, the R ~ 25.2mag host was also observed with
EFOSC/NTT ini and HAWK-I/VLT in the J-band. The galaxy is
moderately red (R—K)ap ~ 1.8 mag) and its SED (Fig. 8) shows
a Balmer/4000 A break, but the age of the dominant stellar pop-
ulation is not well-constrained by the available data (s1 Gyr).
There is no strong evidence of internal reddening, and the best-
fit absolute magnitude is Mg = —21.4+0.2 mag, which is ~0.6 L*
at z ~ 2.5 with log(M.[Mo]) = 9.7*(3. Using the rest-frame UV
flux derived from the galaxy model fitting, an estimate for the
SFR of 10f$0 Mo/yr, and the SSFR of ~2 Gyr~! can be derived.

8 For galaxies, we use A{, or E}_,, to indicate measured attenuation
and effective reddening, since these quantities depend for example on
the topology of the ISM and galaxy geometry (Pierini et al. 2004), and
on galaxy scales are different from the corresponding values of a given
extinction law.
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Fig. 8. SEDs of the host of in this sample and the best-fit galaxy model (solid line) in the observer frame. Filled black circles represent photometric
measurements, while downward triangles denote 30~ upper limits.
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Table 6. Host galaxy properties.

Host Zspec Zphot RA“ Dec* Offset’ Probability  Instruments? Filter

J2000 J2000 arcsec
GRB 070306 1.496 1.64f8:?§ 09:52:23.31  +10:28:55.4 <0/2 0.002 FGI g'r'Ri'7 JgJHKY
GRB 070802 2.452 2.3:1):2 02:27:35.72  -55:31:39.0 0715 +0708 0.011 EFHI RIJK
GRB 080605 1.640 1.7f8;§ 17:28:30.05  +04:00:56.0 0723 + 0”11 0.002 G gri'7 JH
GRB 080805 1.505 1 .7f8;$ 20:56:53.43  —62:26:39.3 <073 0.030 EH VRIJK
GRB 081109 0.979 0.841’8:(‘)? 22:03:09.63  —54:42:39.9 <072 0.002 EFGHU Ug'Vr'i'lZ’YJgJHK
GRB 090926B 1.24 1.43f8:g§ 03:05:13.91  -39:00:22.6 <076 0.018 EFGS Ug'r'i'7 JHK
GRB 100621A  0.542 0.50“_'8:[‘)3 21:01:13.08  -51:06:22.2 0712 + 0’08 0.0006 EGHU w2m2wluUg'v'i'zZ YJHK

Notes. Redshifts from Jaunsen et al. (2008), Elfasdéttir et al. (2009), Fynbo et al. (2009a), Fynbo et al. (2009b) and Milvang-Jensen et al. (2010).
The host of GRB 080607 is not shown in this table. All measurements were directly taken from Chen et al. (2010, 2011). @ Host position
derived after tying the astrometric solution to the USNO-B1 catalog (Monet et al. 2003). Typical absolute uncertainties are ~073. ¢ Relative
offset calculated by registering the host images against astrometric templates derived from afterglow images with a typical precision of 40 mas
rms. ) Estimated chance coincidence probability following Bloom et al. (2002) and Perley et al. (2009). ” G is GROND at the 2.2 m MPG/ESO
telescope, E/S are EFOSC/SOFI at the NTT, and F/H/I are HAWK-I, FORS1/2 and ISAAC at the VLT, and U UVOT onboard Swift respectively.
(" Further complemented by the « and I band magnitudes in Cool et al. (2007) and Jaunsen et al. (2008).

Table 7. SPS host galaxy fitting results.

Host Redshift Mg Age E, log(M..) log SFR  log SSFR L x*/Nsit
magap Gyr mag M, Mo/yr yr! L
GRB 070306 1496  -224=01 167 <0.16(20) 10397012 11093 —93%¢ 17£02 11812
GRB 070802 2452  —214+02 0380 <042(20) 9792 1096 87710 06+02 2.3/
GRBOS0G0S 1640  -226+02 006708 <022(20) 963 1693 807 21x04  33/6
GRBOS0G07 3036  —21.1+0.1 01693 03592  9970¢ 1694  —8219¢  03x01 3.9
GRB 080805 1505  —204+02 05107  <065Q20) 972 0897 -89 03x01  03/5
GRBOSII00 0979  -2127+009 024792 024709  98)+0% 1502  _g403 09401 112/14
GRBO090926B 124  —21.5+0.1 014060 035008 0]#04 904  _g1#6 09401  7.39
GRB 100621A 0542  —20.68=008 00590 0147093 808014 1137015 _70%2 06501 16514

5.2.3. The host of GRB 080605

The host of GRB 080605 at z = 1.640 was discovered in late
GROND follow-up observations of the burst field 22 days af-
ter the GRB trigger. There is evidence of a 2175 A dust feature
in the SED and spectrum with significant Ay in the range of
~0.5-1.3 mag (Greiner et al. 2011; Zafar et al. 2011). The host
is bright (+' ~ 22.8 mag), and blue with a flat ¢’ — 7’ color, and
(R—K)ap ~ 0.5 mag as estimated from the best-fit galaxy model
(Fig. 8). The SED fit further yields M = —22.6+0.2 mag, which
is ~2.1L" at z ~ 1.5, and log(M.[My]) = 9.6f8:§. The domi-
nant stellar population of the host is young (7 = 0.06f8:(1)§ Gyr),
and there is no evidence for reddening at the 20 level (E},_,, <
0.22 mag). The host galaxy is vigorously star-forming with a
SFR of 40f‘2‘8 Mo/yr and a SSFR of ~10 Gyr™!.

5.2.4. The host of GRB 080607

The afterglow of GRB 080607 is heavily reddened (Ay ~
3mag), has a modest 2175 A dust feature, and is character-
ized by a strong neutral hydrogen absorber of roughly solar

metallicity and molecular gas (Prochaska et al. 2009; Perley
et al. 2011b). Data from Chen et al. (2011) show a faint and
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very red host with R ~ 27 mag and a synthetic color of
(R — K)ap ~ 3mag (Fig. 8). The host is well-described with
an extinguished galaxy template (A{, ~ 1-2mag), and physi-
cal parameters of My = —-21.1 £ 0.3 mag, which is ~0.3 L* at
z ~ 3, log(M.[M)]) = 9'9t8:2’ an extinction-corrected SFR of

40fgg Mo/yr, and SSFR of ~8 Gyr~!. These values are in good

agreement with previously published ones (Chen et al. 2011).

5.2.5. The host of GRB 080805

GRB 080805 had a very red afterglow, where both an SED
and spectral analysis inferred a large dust column (Ay ~
1.0-1.5mag), and evidence of a 2175 A dust feature (Fynbo
et al. 2009a; Greiner et al. 2011; Zafar et al. 2011). Its host
was discovered in late EFOSC/HAWK-I imaging in five filters
(VRiJK, see Fig. 8), is relatively bright (R ~ 25.5mag) and
red (R — K)ap = 2.5 mag), with best-fit physical parameters of
Mp =-20.4+0.2mag (~ 0.3 L" atz ~ 1.5) and log(M.[Ms]) =
9.7f8:§. The remaining galaxy properties are poorly constrained
by the available data, yielding a limit to the galaxy redden;ng of

E},_, < 0.7mag, an age of the stellar population of 0.5’:8: 1 Gyr,

a SFR of 6*2° Mo/yr, and a SSFR of ~1 Gyr™'.
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Fig. 9. Wavelength and flux-calibrated FORS2 300V spectrum of the
host of GRB 081109 in black. The thin grey line shows the sky spec-
trum. The red line is the best-fit galaxy model obtained from the avail-
able photometry and red points are the photometric measurements.

At a distance of 2.5” north-east of the afterglow/host posi-
tion, there is another R ~ 25 mag, and even redder (R — K)ap ~
4 mag) galaxy, which is a plausible candidate to be the strong
Mgu absorbing system at z = 1.20 reported in Fynbo et al.
(2009a).

5.2.6. The host of GRB 081109

GRB 0811009 is the only burst in the sample where no spectro-
scopic redshift was available in the literature. However, the host
is bright (' ~ 22.7 mag), moderately red (R — K)ap = 1.6 mag)
and our host spectrum (see Fig. 9) reveals a single emission line
above a well-detected continuum. Within the wavelength cover-
age of the spectrum (~370-950 nm), this emission line is inter-
preted as [OII][A3727] at z = 0.9787 + 0.0005. If it were any
of the other prominent nebular lines (HB, [OIlI], Ha), we would
have expected to detect [OII][A3727] in the spectrum as well.
At this redshift, there is also spectroscopic evidence of a Balmer
break (see Fig. 9).

The host SED is shown in Fig. 8 and well fit with a young
(r = 0.18f8:(')2 Gyr) and reddened (A{, = 1.0 £ 0.2 mag) stel-
lar population. The absolute magnitude of Mp = -21.27 +
0.09 mag corresponds to ~0.9L* at z ~ 1. The stellar mass

obtained from the SPS fit is log(M.[Mo]) = 9.80*005. with

a SFR of 33*19 Mo/yr, which together yields a SSFR of
~5 Gyr~'. The emission-line flux of [OII][A3727] is (1.8 +
0.2) x 10719 erg/cm?/s, which includes a systematic error con-
tribution from the absolute flux normalization. This corresponds
to a dust un-corrected star-formation rate of 13 + 4 My/yr
(Kennicutt 1998), or 48f}2 Mo/yr when using the upper A7, mea-
surement, which is in good agreement with the SFR from the UV
continuum.

5.2.7. The host of GRB 090926B

Promptly after the trigger, Fynbo et al. (2009b) reported the de-
tection of the host galaxy of GRB 090926B based on a promi-
nent [OII] emission line in a VLT/FORS spectrum. The host
is also imaged in later GROND and NTT observations with a

brightness of 7 ~ 23.0 mag, and a mildly red color (R — K)ap ~
1.5 mag) as shown in Fig. 8. The host SED is well fit with an ex-
tinguished host model (A, = 1.4i83 mag) with Mg = -21.5+0.2
(~0.9 L* at z ~ 1.3) and log(M.[M]) = 10.10¢. The SFR based

on the extinction-corrected UV flux is 80260 Me/yr which is
among the highest ever measured from optical data, but is only
poorly constrained given the uncertainty in the dust extinction
properties. The constraints on the age of the stellar population

and SSFR are weak, with values of 7 = 0.14*0% Gyr and the
SSFR of ~7 Gyr™!, respectively.

5.2.8. The host of GRB 100621A

The host of GRB 100621A was reported soon after the trigger
as a DSS2 source, providing a constant contribution to the af-
terglow in the UV/blue light curve (Updike et al. 2010; Oates
& Ukwatta 2010). The redshift of z = 0.542 of GRB 100621A
is based on emission lines from a bright host (Milvang-Jensen
et al. 2010). The SED of the ' ~ 21.5 mag host is well-sampled
from the UV to the NIR and shown in Fig. 8. In strong con-
trast to the extremely red afterglow (R — K)ap ~ 5.8 mag, the
host is blue with an inferred color of (R — K)ap ~ 0.3 mag and
(uvw2 — K)ap ~ 0.9 mag. The SPS host fit returns an intrinsic ex-
tinction of A, = 0.6’:8:; mag for a very young stellar population

ofaget = 0.0ng:gg Gyr. This host has the lowest stellar mass in

the presented sample with log(M.[Mg]) = 8.98f8:%3, and an ab-
solute magnitude of Mp = —20.68 + 0.08 mag, which is ~0.6 L*
at z ~ 0.5. The SFR and SSFR are 13*% My/yr and ~14 Gyr™',

respectively.

6. Discussion
6.1. Dust reddening in GRB afterglow SEDs

The visual extinction measured from X-ray-to-NIR SED-fitting
towards GRBs 070306 (AJR® = 5.5*|7 mag), 081109 (AJR? =
3.4703mag), and 100621A (AJR® = 3.8 + 0.2 mag) are among
the largest ever derived from optical/NIR data for GRB after-
glows (e.g., Savaglio et al. 2003; Kann et al. 2006; Greiner et al.
2011). The dust properties inferred from afterglow measure-
ments are well-represented with local models in the rest-frame
300-1100 nm, and at the resolution of broad-band imaging (see
also e.g., Fynbo et al. 2001; Watson et al. 2006; Kann et al. 2006;
Schady et al. 2007; Starling et al. 2007; Schady et al. 2011b),
while noteworthy exceptions exist in the literature (e.g., Savaglio
& Fall 2004; Perley et al. 2010b; Clemens et al. 2011). The
good fit provided by local dust-extinction laws suggests an abun-
dance of small dust grains comparable to that of the MW/LMC
or SMC. There is hence no direct evidence that the dust towards
these GRBs through their hosts is different than observed along
local sight-lines. A different dust-grain size distribution would
have been expected if the dust were located in the immediate
vicinity (R < 10' cm) of the GRB and shaped through its in-
tense radiation, i.e., through dust destruction (Waxman & Draine
2000; Fruchter et al. 2001; Draine & Hao 2002). In addition, the
metal-to-dust ratios for these afterglows are only a few times
the Galactic value of Ny/Ay ~ 2 x 10?! cm™?/mag (Predehl &
Schmitt 1995). For un-extinguished GRB sight-lines this ratio is
generally found to be a factor of 10—100 times larger than those
of the Magellanic Clouds or Milky Way (e.g., Galama & Wijers
2001; Stratta et al. 2004). This is indicative of a dependence of
the metal-to-dust ratio on the amount of visual extinction. We
return to this issue in Sect. 6.4.
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6.2. The hosts of the dustiest afterglows

The general properties of the selected GRB host galaxies are di-
verse. They have (R — K)ap colors ranging from flat and blue
(R — K)ap ~ Omag to extremely red (R — K)ag ~ 3 mag with
an average color of ((R — K)ag) = 1.6 mag, and host extinc-
tion values between A{, ~ Omag and A{, ~ 2mag. In addition,
their stellar mass and absolute magnitude distributions are broad,
with values between log(M.[Ms]) = 9.0 to log(M.[M]) = 10.4
((log(M.[Ms])y = 9.8 £ 0.4) and Mp between —20.3 mag
and —-22.6 mag ((Mp) = -21.3 + 0.6 mag). These absolute
brightnesses correspond to a range between several tenths and
a few L* ((L) = 0.9L%). The average SFR and SSFR are about
30 Mg/yr and (log SSFR [yr]) ~ —8.3, respectively. The average
growth time is ~0.2 Gyr, which illustrates that not only optically-
selected hosts, but also the hosts of highly-reddened afterglows
are very efficient in producing stars. A rough estimate of the
metallicity of the hosts can be obtained if these GRB hosts fol-
low the fundamental plane as defined for nearby SDSS galaxies
(Mannucci et al. 2010a). With a given stellar mass and SFR, the
host galaxies in this sample are expected to have metallicities in
arange between 12 + log(O/H) ~ 8.2 and 12 + log(O/H) ~ 8.9,
with an average of 12 + log(O/H) ~ 8.6. We caution that the
SFRs were derived using the rest-frame UV flux, which is quite
sensitive to the dust extinction properties.

Although not well-constrained in all cases, the average
luminosity-weighted effective reddening inferred from host pho-
tometry is typically smaller or equal to that measured from af-
terglow observations. This is not a particularly surprising result,
given that the sample selection was based on high visual extinc-
tions of the afterglow SEDs in the first place. It directly indicates
some variation in the dust distribution of the hosts, which again
is not a surprising result, given the differences in extinction prop-
erties along different sight-lines through the diffuse ISM to giant
molecular clouds in the Local Group (e.g., Gordon et al. 2003;
Fitzpatrick 2004), and the geometrical differences between a sin-
gle sight-line and an extended distribution of star-light and dust
(e.g., Gordon et al. 1997; Silva et al. 1998).

One intriguing case is the host of GRB 100621A. Although
having one of the most extinguished afterglows ever detected
(even in the presented sample), its host shows very blue colors,
and is one of the youngest and the least massive galaxy in this
work. This particular example provides evidence of a patchy dust
component where the geometry of the dust distribution, and not
the properties of the host galaxy, makes the specific GRB sight-
line dust-enriched.

6.3. Comparison to previous GRB host samples

One key result of this study is the success rate of the discovery of
the selected hosts. Out of eight hosts, which were selected based
on their afterglow properties (hence a selection independent of
host properties, in particular galaxy brightness), all are luminous
enough to be detected in optical ground-based imaging. This
fraction is significantly larger than expected from a host sam-
ple based on XRT detections (Fynbo et al. 2008; Malesani et al.
2009). The effect of a higher detection rate is even stronger in
the NIR: seven out of eight sources are detectable in the K-band,
while this fraction is only ~35% for the general host population
of Swift/GRBs (Malesani et al. 2009). This is partially the result
of the lower average redshift of the selected hosts ({z4,) = 1.5)
relative to all Swift GRBs with (zswig) ~ 1.9.

The lower redshift is however not the only reason for the high
detection rate. The selected hosts are on average redder and, as
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Fig. 10. Distribution of stellar masses and luminosities of the hosts of
highly extinguished afterglows (blue) and the host sample from SGL09

(grey).

shown in Fig. 10, have typically higher luminosities and stel-
lar masses than the (sensitivity-limited) SGL09 sample, which
has ((R — K)ap) = 0.8mag, (Mg) = —19.6 = 1.5mag, and
(log M.[Ms]) = 9.1 £ 0.6. A two-sample K-S test returns p-
values of 0.002 for the stellar mass, and 0.006 for the absolute
magnitude distributions respectively, which is tentative evidence
that both distributions are not drawn from the same parent sam-
ple. However, given the small sample size of only eight high-Ay
events, larger samples are required to statistically establish the
existence of a difference at higher significance. Both distribu-
tions are of course drawn from the same physical parent sample
(GRB hosts), indicating that the different selection criteria probe
different host properties.

A possible explanation of the different host properties would
be the now on-average higher redshift than the SGL09 sam-
ple, where star formation was driven by more massive galax-
ies than in the more nearby Universe (e.g., Cowie et al. 1996;
Hopkins 2004). To test this hypothesis, we selected a sub-sample
from SGL0O9 with a median redshift comparable to the hosts in
this work. This essentially removes all z < 1 SGL09 hosts and
leaves only 13 events for comparison (see histograms in Fig. 11).
Despite the small number statistics, the M, and Mg values are
again placed at the high-mass and high-luminosity end of their
respective distribution, and a K-S test also provides marginal evi-
dence of a difference (p-values of 0.001 and 0.034 for the masses
and absolute magnitudes).

We conclude that by selecting extinguished afterglows we
very likely probe a more luminous, massive, and chemically
evolved population of GRB hosts.

As it is clear that these were largely missing from previous
samples, there is a selection bias and the GRB host population
is missing most of its massive, evolved and metal-rich members.
As a direct consequence, GRB hosts trace the global SFR more
reliably than indicated in studies that are based on host sam-
ples of optically selected GRB afterglows, and the apparent defi-
ciency of high-mass host galaxies is at least partially a selection
effect.

Similar conclusions apply to all galaxies hosting afterglows
that have a significant 2175 A dust feature in their SED. Four
out of five currently known afterglows are within the presented
sample, which implies that there is a direct connection between
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Fig. 11. Distribution of stellar masses and luminosities of the hosts of
highly extinguished afterglows (blue) and a subsample of SGLO09 (grey)
with (z) ~ 1.5.

large dust columns and the presence of the UV bump (see
e.g., Greiner et al. 2011; Zafar et al. 2011). Their, on average,
more massive and luminous hosts suggest a qualitative rela-
tion between the stellar mass of a galaxy and the presence of a
2175 A feature, where the latter is only present in fairly massive
and metal-enriched galaxies (see also e.g., Noll & Pierini 2005).
Conversely, a strong 2175 A feature in an afterglow SED is also
very likely a good proxy for the stellar mass and luminosity of
the GRB host.

6.4. Metal-to-dust ratios in context

The ratio of the line-of-sight extinction to the total metal column
for GRB afterglows has been investigated in a number of pa-
pers (e.g., Galama & Wijers 2001; Stratta et al. 2004; Savaglio
& Fall 2004; Kann et al. 2006; Schady et al. 2007, 2010; Greiner
et al. 2011; Zafar et al. 2011), where ratios typically much
higher than the ones observed in the Local Group were derived.
Measurements for different Galactic sight-lines (e.g., Predehl &
Schmitt 1995; Giiver & Ozel 2009) show an almost universal
value of around Ny/Ay ~ 2 X 10*' cm~?/mag, while the mat-
ter probed by afterglows can yield metal-to-dust ratios up to
and sometimes even above 100-times higher (e.g., Watson et al.
2007; Rau et al. 2010).

6.4.1. An anti-correlation between metal-to-dust ratio
and sight-line extinction

Figure 12 shows the Ny x /ASR® ratio for a large number of af-
terglows and illustrates its dependence on the sight-line dust ex-
tinction. With the afterglows in this work, there is now for the
first time reasonable coverage in the AJR® ~ 1-5mag range.
Intriguingly, the metal-to-dust ratio is strongly anti-correlated
with AS’RB, confirming the tentative trend reported by Perley
et al. (2009). A Spearman rank-order correlation analysis for the
combined sample in Figure 12 returns a correlation coefficient
p = —0.63, with a two-tailed p-value of 3 x 1077, in strong con-
trast to a constant, universal Ny x /AJR® ratio.

There are two straightforward ways to reconcile this result.
One is a dependence of the metal-to-dust ratio on the specific
environment such that evolved and dust-enriched hosts are more
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Fig. 12. Metal-to-dust ratio versus sight-line extinction for GRB after-
glows. The horizontal dashed lines marks the selection criterion for
GRBs to enter this sample. Vertical dashed lines illustrate metal-to-dust
ratios of 1, 10 or 100 times the Galactic value. Solid lines show the toy
model of two physically independent absorbers, where one is fully de-
void of dust with a H-equivalent metal column of Ny x = 10?'7 cm™
and represented by the dotted line, while the other is neutral and has
metal-to-dust ratios of 1, 2 or 3 times the Local Group value. Two indi-
vidual cases (GRBs 080605 and 080607) illustrate the scatter between
the analysis of different data sets.

efficient in forming dust out of their metals (and in fact we do
observe on average higher stellar masses for the hosts of high
AGRB afterglows). The other is the presence of two physically
independent absorbers, where the first dominates the total metal
column, and the second the visual extinction measurements. This
trivially produces a non-correlation between Ny x and ASR®, and

consequently an Ny x /AGRE to AGRB anti-correlation.

Some outliers and scatter of the metal-to-dust anti-
correlation (Fig. 12) might be caused by difficulties in mea-
suring the respective physical parameters. This is also illus-
trated by the example of two individual events (GRBs 080605
and 080607), where different values have been published in the
literature. Assumptions about the continuum emission, the ex-
tinction law, and the total-to-selective reddening Ry can affect
the AGR® measurement. In addition, there is the possibility that
the cooling break is located close to or within the range of the
UV/optical/NIR measurements. In a standard analysis, the intro-
duced curvature caused by the spectral break is then interpreted
as a larger dust column (Kriihler et al. 2011). The Ny x mea-
surements are also prone to errors: spectral variation intrinsic to
the afterglow can lead to incorrect estimates of the soft X-ray
absorption (e.g., Butler & Kocevski 2007).

6.4.2. Metal-to-dust ratio compared to host mass

As shown in Sect. 6.2, the hosts of dusty afterglows are on av-
erage more massive and luminous than their non-extinguished
counterparts, but there is a broad range of galaxy properties and
the only common feature between all afterglows/hosts in this
work is hence the dusty line of sight. In particular, if the envi-
ronment were responsible for the observed Ny x /AS’RB to visual
extinction anti-correlation, we would expect the metal-to-dust
ratio for GRB 100621A to be comparable to the bulk of optically
bright afterglows. It is, however, one of the lowest ever observed
for GRB afterglows and a factor of five lower than the median
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Fig.13. Total metal-to-dust ratios for GRB afterglows versus stellar
mass of their host galaxies. Black data are galaxies hosting a highly-
extinguished afterglow using the first values of Table 5, where the three
hosts with the highest ASRB are labeled. The shaded area indicates the
probability distribution for optically-selected GRBs, represented by a
log-normal distribution of Ny x/ASR® based on Schady et al. (2010) and
a Gaussian distribution in log(M.[M]) based on SGL09.

for afterglows with hosts of similar mass (see Fig. 13). Although
we note that number counts are still too low to derive strong
constraints with high statistical significance, this suggests that
the specific host environment is not responsible for the observed
dependence of the metal-to-dust ratio on the visual extinction.

6.4.3. A system of two absorbers

In the second scenario, two largely independent (one neutral,
host-galaxy related, one ionized, circumburst specific) columns
of material contribute to the observed absorption, denoted as
MNH neutrals Niion 10 the following. Ny x measures the sum of both,
whereas the AS’RB column would only be associated with the
Ni neutral absorber. This circumburst environment is not unex-
pected: the intense afterglow radiation should not only photoion-
ize the vicinity of the burst, but also destroy the associated dust
in large amounts (Waxman & Draine 2000; Draine & Hao 2002;
Perna et al. 2003), albeit with different effective radii.

For AGRB ~ 0.1 mag sight-lines, Ny neural < Nition directly
results in a large metal-to-dust ratio. With an increasing ASR?
column of around 1 mag, the Ny neurra1 absorber contributes sig-
nificantly to the total metal column (N neutral ® Niion): this is il-
lustrated in Fig. 12 by the solid lines, where the Ny x /ASR® ratio
asymptotically reaches one, two or three times the Local Group
value. Even larger AS’RB columns than present in this work can
test this hypothesis. For an AS’RB > 10 mag sight-line, for exam-
ple, N neutral s much larger than Ny o, and the expected metal-
to-dust ratio would be comparable to its intrinsic value, and to
the Local Group value (if universal).

For the bulk of standard, un- or mildly extinguished after-
glows, the large column of ionized metals with an equivalent
MNition ~ 1021722 cm2 in the circumburst material dominates the
total Ny x measurement, whereas the visual extinction is very
likely caused by dust further out, either in the diffuse ISM, or
localized in interstellar clouds (see also Sect. 6.5). Hence, for
optically bright GRBs the total metal absorption as probed by
the soft X-ray absorption is neither a good measure nor a direct
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tracer of the dust extinction along the line of sight. In other
words, an Nyx column even as large as 10> cm™2 does not
necessarily imply a significant visual extinction (see also, e.g.,
Galama & Wijers 2001; Kann et al. 2006; Schady et al. 2007).

We thus conclude that the anti-correlation between the
metal-to-dust ratio and the sight-line extinction indicates the
presence of two absorbing systems, which are to first order phys-
ically independent. One of them is dusty, the other ionized and
dust-free in most of the cases, where the former is probed by
the optical/NIR data and the latter typically dominates the Ny x
measurement.

6.5. Location and geometry of the absorbing dust column

A natural question about the nature of the absorbing dust, gas,
and metal columns detected in the afterglow SEDs and spectra
is their locations, and whether they are directly related to the
burst environment. A number of previous studies have already
revealed some clues about the geometry of the absorbing mat-
ter, which have been derived quite exclusively from sight-lines
of low total dust content: the distance of the cold-neutral ma-
terial, linked to the DLA and the low-ionization metal absorp-
tion lines has been constrained to be between a few hundreds
of pc and a few kpc (Prochaska et al. 2006; Vreeswijk et al.
2007). In contrast, the high metal column densities as derived
from soft X-ray absorption were associated with a fully ionized
circumburst medium up to a few to several tens of pc (Watson
et al. 2007; Schady et al. 2011a). For bursts with largely un-
extinguished afterglows, most of the metals along the sight-line
are typically in a highly ionized state and only <10% of the ab-
sorbing gas is neutral (Schady et al. 2011a). In addition, there
is no statistically significant correlation between the soft X-ray
absorption and neither the dust column as inferred from opti-
cal/NIR data nor the metallicity of the neutral material (e.g.,
Schady et al. 2007; Zafar et al. 2011), nor the darkness of a GRB
(Campana et al. 2010; see however Fynbo et al. 2009a). There
is however a trend of higher visual extinctions with larger neu-
tral metal columns and an anti-correlation between gas-to-dust
ratio and metallicity (Zafar et al. 2011). Dark bursts also have
stronger neutral metal absorption lines in their optical spectrum
(Christensen et al. 2011).

The dustiest afterglows and their hosts provide two addi-
tional pieces of information. Firstly, there is the previously dis-
cussed anti-correlation between metal-to-dust ratio and sight-
line extinction, albeit with a large scatter for individual events.
And secondly, their hosts are on average redder, more lumi-
nous and massive, and supposedly also more evolved, dust- and
metal-rich than their low-AJR® counterparts (e.g., Kobulnicky &
Kewley 2004; Savaglio et al. 2005). There is hence a relation be-
tween the dust along the sight-line towards the GRB and physi-
cal host properties. This relation is expected if the dust probed by
the afterglow is located at large enough distances to be fairly rep-
resentative of the size of the host galaxy, its global dust enrich-
ment, and its chemical state. In contrast, dust in the surrounding
environment of a GRB, even if present and able to survive the
intense afterglow or progenitor radiation, should instead be re-
lated to the very specific details of its circumburst environment
or the GRB’s birth cloud.

An overlap with optically selected hosts clearly exist: very
young, blue, and low-mass galaxies possess sight-lines through
dusty regions as demonstrated through the afterglows and hosts
of, e.g., GRBs 080605 and 100621A. For this kind of events,
the data are clearly not consistent with a uniform dust-shield.
In a few cases, the observations instead indicate a patchy dust
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distribution where the dust is located in clumps of small enough
covering factor and large enough extinction to be negligible in
the integrated host-light distribution. The variations in the visual
extinction in some cases are therefore a geometrical effect (see
also, e.g., Berger et al. 2003; Perley et al. 2009).

This raises questions about the validity of star-formation es-
timates obtained for young and blue galaxies. Afterglow obser-
vations show that extinguished star-formation takes place even
in apparently unextinguished galaxies. Here, either the cover-
ing factor of the dusty clump is just too small to remove sig-
nificantly from the host light, or the clump completely absorbs
all UV light from the star-forming region, thus having a neg-
ligible effect on the host galaxy colors. In the latter case, the
UV-derived SFRs would strictly represent lower limits to the
star-formation in these galaxies. Far-infrared, sub-mm or radio
observations with Herschel, ALMA or the VLA, respectively,
would enable a measurement of the galaxies global SFR, and its
dust mass and temperature and help to clarify this issue.

A coherent picture of highly extinguished afterglows in com-
bination with their diverse, but on average redder and more mas-
sive hosts could be obtained within a complex dust distribution
made out of several constituents related to extinction in the dif-
fuse ISM, extended interstellar clouds, or localized in fairly com-
pact and dense regions such as giant molecular clouds.

The dust column density is hence very likely not directly
located in the GRB environment but plausibly with the neutral
absorber at distances of a few hundred pc to one kpc. We stress,
however, that the effective radii of dust destruction and photo-
ionization will shape the detailed gas-to-dust and metal-to-dust
ratios, adding further complexity to the absorbing system(s) in
front of GRB afterglows. Furthermore, the dust distribution in
high-z galaxies might be even more complex because of dusty
galaxy outflows, and reflect the absence of a uniform chemical
enrichment on scales up to one kpc (e.g., Noll et al. 2009).

7. Conclusions

The afterglows of GRBs 081109 (AGRE = 3.4*04mag) and

100621A (ASRB = 3.8 + 0.2 mag) join the growing sample of
highly extinguished events. Their continuum emission is well-
constrained by the combination of X-ray and NIR data, and the
optical observations provide a detailed measurement of the dust
properties along the sight-lines. While some diversity in their
extinction properties, particularly dust abundance, clearly ex-
ists, GRBs 081109 and 100621A provide compelling evidence
that a highly obscured afterglow is also a highly reddened one,
and that extinction laws derived from local sight-lines accurately
estimate the dust properties towards even highly extinguished
GRB:s.

The availability of a large enough sample of coeval
afterglows with multi-wavelength data would ideally enable to
advance from single sight-line, pencil-beam investigations to a
statistically symmetric geometry, where each GRB afterglow
represents a different sight-line through its host galaxy. In anal-
ogy to the case studied by Witt & Gordon (1996), this could
provide a good description of the structure and evolution of the
absorbing medium and help to constrain the opacity and filling
factors of the dust geometry and clumps from the distribution of
AS’RB values in star-forming galaxies out to very high redshift.

The hosts of the dustiest afterglows provide a different pic-
ture of GRB host galaxies compared to the hosts of optically-
selected bursts. Although both samples overlap in terms of their
properties, the galaxies in this work have typical luminosities of

around L* and stellar masses of M, ~ 10'© Mg, hence more
luminous and massive than the hitherto discovered, on aver-
age faint and blue hosts. Although the number counts are still
low, this work indicates that a selection based on a large AGR®
picks up preferentially the more massive and chemically-evolved
GRB hosts, which is in qualitative agreement with observations
(Perley et al. 2010a, 2011a; Rossi et al. 2011b), and theoreti-
cal expectations (Campisi et al. 2011) for the properties of dark
GRB host galaxies.

This suggests that the properties of complete GRB host sam-
ples are diverse, and complex selection biases are still present:
not only are the very faintest GRB hosts missing because of
inherent sensitivity limits, but also some of the brightest, most
luminous, and chemically evolved ones, because they have not
been localized accurately enough. Fairly large and massive,
dusty, and metal-rich galaxies are able to host GRBs, and the
trend of low-metallicity GRB hosts is not as significant as
claimed in previous studies, and possibly a selection effect of
the young galaxy population dominating the global SFR at low-z
(e.g., Berger et al. 2007; Mannucci et al. 2011). This has substan-
tial implications for the feasibility of tracing the star-formation
history with GRB hosts and also for the progenitor channels of
GRB production as a result of their metallicity dependence. In
the former case, this work indeed indicates that the deficiency
of high-mass GRB host galaxies in previous studies was at least
partially due to a selection bias. The latter case, however, de-
pends quite strongly on the assumption that the host-inferred
metallicities are representative of the composition of the pro-
genitor star, while different sight-lines through a GRB host can
show a dispersion in metallicity of around a factor 100 (Pontzen
et al. 2010).

Intriguingly, all GRBs with AS®® > 4 mag have metal-to-
dust ratios significantly below what is typically measured for
GRB afterglows, and more in line with measurements from the
Local Group. In addition, there is a strong anti-correlation be-
tween the metal-to-dust ratio and the visual extinction along the
GRB sight-line. This effect seems independent of the specific
host properties and can be interpreted as evidence of two physi-
cally independent absorbers: dust-free, ionized metals in the cir-
cumburst environment (typically probed by the soft X-ray ab-
sorption), and in contrast a dusty absorber further out (probed
by reddening measurements in the UV/optical/NIR).

The existence of a dust column independent of the imme-
diate circumburst environment is further supported by the rela-
tion between afterglow ASRB and host properties, in particular
the on-average higher stellar mass and redder colors. Coupled
with the blue and very young hosts of, e.g., GRBs 080605 or
100621A, this provides evidence of a complex dust geometry in
star-forming galaxies with different constituents in the diffuse
ISM and in localized patches, which are plausibly associated
with the cold-neutral absorber detected in rest-frame UV/optical
GRB afterglow spectra.

Further advances can now be made by getting direct ob-
servational access to more dusty sight-lines including AS’RB >
10 mag events, including those at higher redshifts. Similar ob-
servations of a large enough sample would investigate the de-
pendence of the global dust enrichment on cosmic evolution
and vice versa, and constrain the fraction of dust-enshrouded
star-formation out to very high redshifts. A sophisticated obser-
vational strategy coupled with state-of-the-art instrumentation
makes such a challenging study feasible. A rapid response of
the order of several minutes by a NIR imager at an 8 m-class
telescope would have enabled the detection of the afterglows of
GRB 100621A (z ~ 0.5) up to ASRE ~ 30 mag, GRB 081109
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(z ~ 1) up to AGRB ~ 20 mag, and GRB 070802 (z ~ 2.5) up to
AGRB ~ 10 mag, which subsequently could have been followed-
up using NIR spectroscopy. Once an accurate position as well
as detailed information about the GRB sight-line is available,
their hosts are readily accessible for multi-wavelength surveys
via large ground- and space-based facilities, yielding informa-
tion about otherwise fully extinguished environments and un-
precedented insights into the conditions of star-forming galaxies
throughout the Universe.
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