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ABSTRACT

Aims. The quick and precise localization of GRBs by the Swift telescope allows the early evolution of the afterglow light curve to
be captured by ground-based telescopes. With GROND measurements we can investigate the optical/near-infrared light curve of the
afterglow of gamma-ray burst 080413B in the context of late rebrightening.
Methods. Multi-wavelength follow-up observations were performed on the afterglow of GRB 080413B. X-ray emission was detected
by the X-ray telescope onboard the Swift satellite and obtained from the public archive. Optical and near-infrared photometry was
performed with the seven-channel imager GROND mounted at the MPG/ESO 2.2 m telescope and additionally with the REM tele-
scope, both in La Silla, Chile. The light curve model was constructed using the obtained broad-band data.
Results. The broad-band light curve of the afterglow of GRB 080413B is well fitted with an on-axis two-component jet model. The
narrow ultra-relativistic jet is responsible for the initial decay, while the rise of the moderately relativistic wider jet near its decelera-
tion time is the cause of the rebrightening of the light curve. The later evolution of the optical/NIR light curve is then dominated by
the wide component, the signature of which is almost negligible in the X-ray wavelengths. These components have opening angles
of θn ∼ 1.7◦ and θw ∼ 9◦, and Lorentz factors of Γn > 188 and Γw ∼ 18.5. We calculated the beaming-corrected energy release to be
Eγ = 7.9 × 1048 erg.

Key words. ISM: jets and outflows – gamma rays: general – X-rays: individuals: GRB 080413B

1. Introduction

Gamma-ray burst (GRB) afterglows are commonly interpreted
in the framework of the standard synchrotron shock model, in
which an ultra-relativistic shock is expanding into the ambient
medium swept up by the blast wave (Mészáros 2002; Zhang &
Mészáros 2004; Piran 1999). For the simplified assumption that
the shock front is spherical and homogeneous, a smooth after-
glow light curve is expected. This smooth power-law decay with
time was a common phenomenon in most of the pre-Swift GRBs
(Laursen & Stanek 2003), because the afterglow observations
typically began ∼1 day after the burst compared to now when
we can be on-target within minutes.

The Swift satellite (Gehrels et al. 2004) allows studies of
the early afterglow phase thanks to its rapid slew, a precise
localization of GRBs with its Burst Alert Telescope (BAT,
Barthelmy et al. 2005), and the early follow-up with two tele-
scopes sensitive at X-ray (XRT, Burrows et al. 2005) and ultra-
violet/optical (UVOT, Roming et al. 2005) wavelengths. Since
its launch in 2004, Swift, together with ground-based follow-up

� Tables 1–3 are only available in electronic form at
http://www.aanda.org

telescopes, has provided many early and well-sampled after-
glow light curves deviating from the smooth power-law decay
(Panaitescu et al. 2006a; Nousek et al. 2006; Zhang et al. 2006;
Panaitescu et al. 2006b). Such variability can shed light on the
central engine and its surroundings.

Several major scenarios have been proposed for afterglow
variability. The reverse shock emission might add to the emis-
sion from the forward shock (see Sect. 4.1, Sari & Piran 1999;
Mészáros & Rees 1993; Zhang et al. 2003; Kobayashi & Zhang
2003), the shock might be refreshed by slower shells catch-
ing up with the decelerating front shells (see Sect. 4.2, Rees
& Mészáros 1998; Panaitescu 2005; Sari & Mészáros 2000;
Panaitescu et al.1998; Granot et al. 2003; Kumar & Piran 2000),
the ambient density profile into which the blast wave expands
might not be homogeneous (see Sect. 4.3, Lazzati et al. 2002;
Nakar et al. 2003; Zhang et al. 2006; Nakar & Piran 2003; Ioka
et al. 2005; Wang & Loeb 2000; Dai & Lu 2002; Nakar & Granot
2007), or the jet may have an angular structure different from a
top hat (see Sect. 4.4, Peng et al. 2005; Granot et al. 2006; Berger
et al. 2003; Racusin et al. 2008).

Here we provide details of the Swift, GROND, and REM ob-
servations of the afterglow of GRB 080413B and test the above
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alternative scenarios for consistency with these data. Throughout
the paper, we adopt the convention that the flux density of the
GRB afterglow can be described as Fν(t) ∝ tαν−β.

2. Observations

2.1. Swift

The Swift/BAT triggered by the long GRB 080413B at T0 =
08:51:12 UT started slewing to the burst after 70 s (Stamatikos
et al. 2008). The mask-weighted light curve shows a single
FRED-like peak starting at T0−1.1 s, peaking at T0+0.2 s, and re-
turning to baseline at ∼T0+30 s. The measured T90 (15–350 keV)
is 8.0± 1.0 s (Barthelmy et al. 2008). The BAT prompt emission
spectrum was fitted using the Band function with a photon index
of α = −1.24 ± 0.26 and an Epeak = 67+13

−8 keV (Krimm et al.
2009). By integrating the GRB spectrum using the Band func-
tion, we estimate the event fluence in the 15–150 keV energy
range to be 3.1± 0.12× 10−6 erg/cm2 (Krimm et al. 2009). With
a standard concordance cosmology (H0 = 71.0 km s−1/Mpc,
ΩM = 0.27, ΩΛ = 0.73, Komatsu et al. 2009), and a redshift
of z = 1.1 (Fynbo et al. 2009), the bolometric (1 k eV–10 MeV)
energy release of GRB 080413B is Eiso = 1.8 × 1052 erg, with a
rest-frame Epeak of ∼150 keV. The difference between this value
and the value in Krimm et al. (2009) is only due to different set
of cosmological parameters used.

The Swift/XRT started observations of the field of
GRB 080413B 131.2 s after the trigger (Stamatikos et al. 2008;
Troja & Stamatikos 2008). XRT data were obtained from the
public Swift archive and reduced in the standard manner using
the xrtpipeline task from the HEAsoft package, with response
matrices from the most recent CALDB release. The XRT light
curve was obtained from the XRT light curve repository (Evans
et al. 2007, 2009). Spectra were grouped using the grppha task
and fitted with the GROND data in XSPEC v12 using χ2 statis-
tics. The combined optical/X-ray spectral energy distributions
were fitted with power-law and broken power-law models and
two absorbing columns: one Galactic foreground with a hydro-
gen column of NH = 3.1 × 1020 cm−2 (Kalberla et al. 2005) and
another one that is local to the GRB host galaxy at z = 1.1.
Only the latter was allowed to vary in the fits. To investigate
the dust reddening in the GRB environment, the zdust model
was used, which contains Large and Small Magellanic Clouds
(LMC, SMC) and Milky Way (MW) extinction laws from Pei
(1992).

2.2. REM

The Rapid Eye Mount (REM, Zerbi et al. 2001) 60 cm robotic
telescope, located at the ESO La Silla observatory (Chile), re-
acted promptly and began observing GRB 080413B on April 13
08:52:13 UT, about 76 s after the GRB trigger time. A transient
source was detected both in the R and H bands, and follow-up
observations lasted for ∼1 h. The afterglow is well detected only
up to about 300 s, then its brightness falls below the instrument
detection limits in both filters.

Each single H-band observation was performed with a
dithering sequence of five images shifted by a few arcsec. These
images are automatically elaborated using the jitter script of
the eclipse (Devillard 1997) package. The script aligns the im-
ages and co-adds all the frames to obtain one average image for
each sequence. The R-band images were reduced using standard

procedures. A combination of the IRAF1, and Sextractor pack-
ages (Bertin & Arnouts 1996) were then used to perform aper-
ture photometry.

The photometric calibration for the H band was accom-
plished by applying average magnitude shifts to the ones of
bright, isolated, unsaturated stars in the field, as reported in the
2MASS catalog. The optical data were calibrated using instru-
mental zero points, checked with observations of standard stars
in the SA96 Landolt field (Landolt 1992). All data were then
cross-calibrated using GROND photometry to obtain consistent
results.

2.3. GROND

The Gamma-Ray burst Optical Near-infrared Detector
(GROND, Greiner et al. 2008; Greiner et al. 2007) responded
to the Swift GRB alert and initiated automated observations at
08:56 UT, 5 min after the trigger. A predefined sequence of
observations with successively increasing exposure times was
executed and images were acquired in the seven photometric
bands (g′r′i′z′JHKs) simultaneously. The observations contin-
ued for two months, and the last of ten epochs was acquired on
June 11th, 2008. In total, 191 CCD optical individual frames in
each g′r′i′z′ and 2718 NIR images of 10 s exposures in JHKs
were obtained. The CCD integration time scaled from 45 to
360 s according to the brightness of the optical afterglow.

A variable point source was detected in all bands (Krühler
et al. 2008a) by the automated GROND pipeline (Küpcü Yoldaş
et al. 2008). The position of the transient was calculated to
be R.A. (J2000)= 21:44:34.67 and Dec (J2000)=−19:58:52.4
compared to USNO-B reference field stars (Monet et al. 2003)
with an astrometric uncertainty of 0.′′3. The afterglow was also
observed and detected by the Faulkes Telescope South (Gomboc
et al. 2008) and Skynet/PROMPT (Brennan et al. 2008), and
spectroscopy was obtained with the GMOS spectrograph on
Gemini-South (Cucchiara et al. 2008) and FORS1 on VLT
(Vreeswijk et al. 2008), both determining a redshift of 1.10.

The optical and NIR image reduction and photometry were
performed using standard IRAF tasks (Tody 1993) similar to
the procedure described in detail in Krühler et al. (2008b). A
general model for the point-spread function (PSF) of each im-
age was constructed using bright field stars and fitted to the af-
terglow. In addition, aperture photometry was carried out, and
the results were consistent with the reported PSF photometry.
All data were corrected for a Galactic foreground reddening
of EB−V = 0.04 mag in the direction of the burst (Schlegel
et al. 1998), corresponding to an extinction of AV = 0.11 us-
ing RV = 3.1, and in the case of JHKs data, transformed to
AB magnitudes.

Optical photometric calibration was performed relative to the
magnitudes of six secondary standards in the GRB field, shown
in Fig. 1 and Table 3. During photometric conditions, a spec-
trophotometric standard star, SA112-223, a primary SDSS stan-
dard (Smith et al. 2002), was observed within a few minutes
of observations of the GRB field. The obtained zeropoints were
corrected for atmospheric extinction and used to calibrate stars
in the GRB field. The apparent magnitudes of the afterglow were
measured with respect to the secondary standards reported in

1 IRAF is the Image Reduction and Analysis Facility made available
to the astronomical community by the National Optical Astronomy
Observatories, which are operated by AURA, Inc., under contract with
the U.S. National Science Foundation. It is available at http://iraf.
noao.edu/
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Fig. 1. GROND r′ band image of the field of GRB 080413B obtained
342 s after T0. The optical afterglow is shown inside the Swift XRT error
circle. The secondary standard stars are numbered from 1 to 6 and their
magnitudes reported in Table 3.

Table 3. The absolute calibration of JHKs bands was obtained
with respect to magnitudes of the Two Micron All Sky Survey
(2MASS) stars within the GRB field obtained from the 2MASS
catalog (Skrutskie et al. 2006).

3. Results

3.1. Afterglow light curve

The optical/NIR light curve (Fig. 2) of the afterglow of
GRB 080413B shows an initial decay with a temporal slope
α = −0.73 ± 0.01, followed by a flattening starting at roughly
1 ks. Despite the lack of data between 5 and 90 ks, a compara-
ble brightness at the beginning and at the end of the gap (chro-
matic fading from ∼0.8 mag in the g′ band to ∼0.2 mag in the
Ks band) suggests a plateau. The light curve then resumes the
decay with a steeper temporal slope of α = −0.95 ± 0.02 until
an achromatic break at roughly 330 ks. Owing the achromacity,
time, and sharp steepening of the decay, we assume this to be a
jet break. After this break the afterglow fades with a steep decay
of α = −2.75 ± 0.16. The flattening at the end (>T0 + 1 Ms) of
the light curve suggests a faint host galaxy.

The X-ray light curve shows a different evolution. The initial
decay has the same temporal slope as the optical/NIR light curve,
but the later plateau phase is missing completely. The time of the
break at ∼330 ks and the decay index after this break is adopted
from the optical/NIR data as the X-ray flux does not provide
strong constraints in this part of the X- ray light curve.

Both light curves were jointly fitted with an empirical model
consisting of three components (see Fig. 3). The first compo-
nent is composed of two smoothly connected power-laws. The
second component was needed to model the later rebrightening
and uses three smoothly connected power-laws. The flattening
in the latest part was modeled with a constant flux. As a result
of the high accuracy of the data and good sampling in the time
domain, most parameters were left free to vary and are presented
in Table 4.

The only fixed parameters were the smoothnesses s of all
breaks connecting the power-laws and the flux of the host
galaxy in filters without a detection in the latest flattening phase
(i′, z′, J,H, and Ks). The smoothness was fixed to a value of
s = 10 in two cases where the power-law decay was steepen-
ing in order to be consistent with the smoothness of a jet break
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Fig. 2. Light curve of the X-ray (top panel) and optical/NIR (middle
panel) afterglow of GRB 080413B. Bands are offset by g′+2, r′+1.5, i′+
1, z′ + 0.5,H − 0.5,Ks − 1 mag, and REM data RR and HR have offsets
corresponding to GROND data. The bottom panel shows residuals to
the combined light curve fit. Shown data are corrected for the Galactic
foreground extinction and transformed into AB magnitudes. Upper lim-
its are not shown for better clarity. Gray regions show the time intervals
where SEDs are reported (Fig. 4).

(Zeh et al. 2006) and to a value of s = 2 in the place of the
peak of the second component. The flux of the host was fixed
to values that assume an achromatic afterglow evolution, though
this is probably not quite correct, as the host is expected to have
different colors than the afterglow.

The optical/NIR light curve (Fig. 2) of the afterglow of
GRB 080413B can be divided into six segments a, b, c, d, e,
and f , based on the temporal indices shown in Fig. 3. We as-
sign segment a to the first, and segments c, d, e to the second
component. Segment a is the prompt decay dominated by the
first component. In segment b we see the rising influence of the
second component, which then dominates the rest of the later
optical light curve and peaks in the third segment c. The best fit
in the segment c is a plateau-like evolution without any sharp
flares. Though we have no data points in this segment, magni-
tudes from Gomboc et al. (2008) are in good agreement with
this interpretation. Segments d and e are fully dominated by the
second component with segments e and f showing the rising
influence of the constant flux, which we interpret as the host
galaxy. This host galaxy was detected in the g′ and r′ bands, but
the stellar mass is not constrained by the optical identification
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Table 4. Light curve fit with smoothness, break-time, and power-law slope parameters for both components.

Fν(t) α1 t1[s] s1 α2 t2[s] s2 α3 χ2/d.o.f.
DPLa −0.73 ± 0.01 3903 ± 181 10 −1.39 ± 0.05

462 / 429
TPLb 0.55 ± 0.05 36999 ± 2761 2 −0.95 ± 0.02 332437 ± 11375 10 −2.75 ± 0.16

Notes. (a) Smoothly connected double power-law. (b) Smoothly connected triple power-law.
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Fig. 3. Three-component fit for GRB 080413B as the superposition of
the afterglow emission from the two jets and the host. Shown are the
GROND r′ and REM R band data, with all other bands omitted to en-
hance clarity. The additional systematic structure in the residuals be-
tween 300 s and 5000 s could be additional small-scale variability,
which we ignore here.

obtained by GROND because observations probe the rest-frame
wavelengths below the 4000 Å break, where the mass-to-light
ratio can vary by a factor of more than 100. The X-ray light
curve shows a significantly different evolution, mainly due to a
much lower contribution from the second component to the total
flux. The absence of the rebrightening part gives evidence of the
flux from the second component being stronger in optical wave-
lengths and nearly negligible in X-rays. This suggests a different
physical origin for each component.

3.2. Broad-band spectrum

The afterglow spectrum can be parameterized over a broad
wavelength range using X-ray, optical, and NIR data. Broad-
band spectral energy distributions (SED, Fig. 4) were con-
structed at four different time intervals, which are indicated in
the light curve (Fig. 2). Fit parameters of these SEDs are pre-
sented in Table 5.

As already evident from the lack of the plateau phase in the
X-ray light curve, there is a spectral evolution between data from
the time intervals II and III. The two last optical/NIR SEDs (III
and IV) are consistent with a power-law with a spectral index
consistent with the X-ray spectral index without strong signa-
tures of any curvature. There is also no evidence of any spectral
evolution between SEDs before and after the break at 330 ks,
providing more evidence of an achromatic jet break. Both the
optical/NIR and X-ray emission in these two latest phases probe
the same segment of the afterglow synchrotron spectrum with a
spectral slope β ∼ 0.92.

SEDs of phases I and II show evidence of a synchrotron cool-
ing break between the X-ray and optical/NIR frequencies. We
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Fig. 4. Broad-band spectral energy distribution using the X-ray and op-
tical/NIR data at four epochs indicated in Fig. 2. The data were fitted us-
ing a power-law, modified by a Galactic and intrinsic hydrogen column.

fixed the difference in values between optical/NIR and X-ray
spectral indices to 0.5 (as predicted by the standard fireball
model; Sari et al. 1998) but the values come from the fitting.
This produced a cooling break that showed a slight drift to lower
frequencies with time. However, the error on the cooling break
frequency is too large to claim any trend, and the cooling break
is therefore consistent with being constant as well. We note
that this possible cooling break passage through the optical/NIR
bands cannot be the cause of rebrightening as it would have the
opposite effect, i.e. a steepening of the decay (Sari et al. 1998).

3.3. Closure relations

The optical/NIR temporal index α = −0.73 ± 0.01 of the seg-
ment a is consistent within 3σ errors with the closure relations
(Granot & Sari 2002; Dai & Cheng 2001; Zhang & Mészáros
2004; Racusin et al. 2009) for a normal decay in the νm < ν < νc
regime, where the jet is interacting with a homogeneous ISM and
is in the slow cooling phase. The corresponding power-law in-
dex of electron energy distribution p = 1.44 ± 0.16 is very hard.
The X-ray temporal and spectral slopes in the segment a are in-
consistent with any closure relations. While the spectral slope is
different from that in the optical/NIR wavelengths, the temporal
slopes are similar.

The temporal index α = −1.39 ± 0.05 of the second power-
law of the first component after the break is within 1σ consis-
tent with the closure relations for a post-jet break decay in the
νm < ν < νc regime, where the jet is interacting with a homo-
geneous ISM and does not spread. The X-ray slopes are again
inconsistent with any closure relations.

The initial decay of the second component in segment d with
an index of −0.95 ± 0.02 is consistent (within 1σ) with the clo-
sure relations for the normal (pre-jet break) decay in the ν > νc
regime for a homogeneous ISM and slow cooling case. The
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Table 5. SED fits of four epochs using X-ray and optical/NIR data.

Epoch Optical/NIR spectral index β X-ray spectral index β Cooling frequency [eV] NH
a [1022 cm−2] χ2/d.o.f

I 0.22 ± 0.08 0.72 ± 0.08 29.6+10.4
−24.2 0.16 ± 0.12 24/36

II 0.22 ± 0.04 0.72 ± 0.04 21.1+26.7
−12.0 0.16 (frozen) 16/12

III 0.90 ± 0.05 0.16 (frozen) 23/17
IV 0.95 ± 0.05 0.16 (frozen) 10/6

Notes. (a) Intrinsic hydrogen column density, in excess of the frozen Galactic foreground of NH = 3.1 × 1020 cm−2.

corresponding electron energy distribution index p = 1.84±0.32
is still rather hard but closer to the values typical of GRBs. The
late temporal decay is not constrained well by the data, but it is
relatively steep and consistent with being achromatic. Fixing the
break to be rather sharp (Zeh et al. 2006) results in a decay with
a temporal index of α ∼ −2.8, indicative of a post jet break evo-
lution and a break time of roughly 330 ks. This light curve slope,
however, is not consistent with any closure relation, which might
be, at least partially, the result of the parameter fixing in the light
curve fitting.

4. Discussion

Rebrightenings of the afterglow light curves are generally asso-
ciated with density inhomogeneities in the circumburst medium
or with different forms of late energy injections. In this sec-
tion we discuss various possible models for interpreting the
optical/NIR rebrightening and conclude that the data require the
two-component jet model to explain all the light curve features.

4.1. Reverse shock emission

When the relativistic shell of the fireball ejecta encounters the
interstellar medium, the reverse shock propagates back into the
shocked material and can produce a bright optical flash (Sari
& Piran 1999; Mészáros & Rees 1993). This emission peaks
very early, before the emission from the forward shock, and
has a steep temporal decay index α ∼ −2 (Zhang et al. 2003;
Kobayashi & Zhang 2003). The reverse shock is therefore in-
consistent with being the source of the late emission during the
plateau phase in segment c since this emission peaks at several
hours after the burst. A second scenario would be that the ini-
tial light curve emission in segment a was the reverse shock
component decay and the later plateau was the result of the
forward shock emission reaching a peak followed by its slow
decay, which would then dominate the later light curve (seg-
ments c, d, e). However, the shallow temporal index during the
initial decay in segment a is incompatible with emission from a
reverse shock. The light curve of the afterglow is therefore in-
compatible with emission from reverse shocks.

4.2. Refreshed shock emission

Refreshed shocks are produced when slower shells with a lower
Lorentz factor catch up with the afterglow shock at late times
(Rees & Mészáros 1998; Panaitescu 2005; Sari & Mészáros
2000; Panaitescu et al. 1998). Each collision then causes a re-
brightening in the afterglow light curve. After the rebrighten-
ing, the afterglow resumes its original decay slope (Granot et al.
2003). However, these rebrightenings are generally achromatic
(Kumar & Piran 2000) as the slow shell reenergizes the forward
shock, which is responsible for both X-ray and optical emis-
sion. Therefore, a refreshed shock could not create the chromatic

rebrightening in the light curve of the afterglow after the ini-
tial decay. Different temporal indices before and after this event
moreover exclude refreshed shocks as a feasible explanation for
the evolution of the light curve.

4.3. Inhomogeneous density profile of the ISM

Variations in the external density provide a possible explanation
for the temporal variability of the GRB afterglow light curves
within the external shock framework (Lazzati et al. 2002; Nakar
et al. 2003; Zhang et al. 2006; Nakar & Piran 2003; Ioka et al.
2005; Wang & Loeb 2000; Dai & Lu 2002). Such variations
might be the result of the interstellar medium turbulence or vari-
ability in the winds from the progenitor. The first case might be
characterized by either an abrupt change in the radial density or
density clumps on top of a smooth background. The latter can be
a case of the wind termination shock, which is an abrupt increase
in the radial density between wind environments of two evolu-
tionary stages of the massive progenitor. Models suggest that
these inhomogeneities will have a clear observational signature
in the form of the optical afterglow light curve rebrightening.

The initial decay of the light curve of GRB 080413B is a
smooth power-law with α ∼ −0.7. At T ∼ 0.12 d α becomes pos-
itive over a factor ∼2−3 in time. According to Nakar & Granot
(2007) and van Eerten et al. (2009), such a large increase in α
over a relatively small factor in time is not expected from vari-
ations in the external density. Even though our temporal index
during the rebrightening is based on the fit alone, real data be-
fore and after this gap show that a smooth power law connected
with very sharp breaks and with a temporal index very near zero
would be needed to connect these data points without a rebright-
ening with a peak. While the wind termination shock could ex-
plain the lack of the rebrightening feature in X-ray band, the ex-
pected increase in temporal index above the cooling frequency
is too small to be compatible with our optical light curve.

4.4. Two-component jet

The generic two-component jet model consists of a narrow and
highly relativistic jet, responsible for the prompt afterglow emis-
sion, and of a wider and moderately relativistic jet, dominant in
the later afterglow emission (Peng et al. 2005; Granot et al. 2006;
Berger et al. 2003; Racusin et al. 2008). For an on-axis geome-
try, the resulting afterglow light curve is a superposition of these
two components, where the decelerating narrow jet creates the
initial decay and the wide jet dominates the later emission that
rises during the pre-deceleration phase, followed by the shal-
low decay with a possible jet break. The relative energies and jet
structure then define the light curve morphology.

The light curve is well-fitted (red. χ2 = 1.08) with the sum
of the two components that we relate to the two afterglow jets,
where both are viewed on-axis and are coaxial. The initial shal-
low decay phase of segment a could be the result of the emission
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of the decelerating narrow jet. Given that we do not see any
rising part in the early light curve and that even the very early
data from the REM telescope have the same decay slope as the
later GROND data, we can safely assume that we see the nar-
row jet on-axis. From the time of the jet break at around 3.9 ks,
we can calculate the opening angle (Sari et al. 1999b) of the
narrow jet as θn ∼ 1.7◦, substituting the measured quantities
and normalizing to the typical values n = 1 cm−3 and η = 0.2
(Bloom et al. 2003). Assuming the time of the first R′ band data
point to be upper limit on the time of the emission peak, we
calculate the initial Lorentz factor (Molinari et al. 2007) to be
Γn > 188. These values lead to the beaming factor and the true
gamma-ray energy release (Frail et al. 2001; Bloom et al. 2003)
of fb = (1 − cos θjet) = 4.4 × 10−4 and Eγ,n = 7.9 × 1048 erg.

The wide-jet component might be responsible for the re-
brightening starting at around 10 ks. However, this second com-
ponent is visible even earlier in the initial decay phase, where the
light curve gets shallower (segment b). The initial rising tempo-
ral index is compatible with the jet decelerating in the circum-
burst medium. The wide jet is therefore seen on-axis as well,
and both jets can be considered coaxial. The jet break at roughly
330 ks indicates an opening angle of the wide jet of θw ∼ 9◦. The
initial Lorentz factor, corresponding to the peak of the second jet
at 37 ks, is then Γw ∼ 18.5.

5. Conclusions

In this paper we study the optical/NIR light curve produced by
the afterglow of GRB 080413B. The possibility that the jet of
this GRB might have a narrow ultra-relativistic core and a wider,
mildly relativistic outer component has been indicated by the
observation of the afterglow emission. An on-axis coaxial two-
component jet model provides a consistent description of the
properties of GRB 080413B, and can additionally explain the
wide range of light curve evolutions, the difference between op-
tical/NIR and X-ray light curves, and the chromatic evolution of
the optical light curve itself.

The comparison with the two most prominent light curves
modeled by the two-component jet to date – GRB 050315 and
GRB 080319B – reveal consistency with the GRB 080413B af-
terglow light curve. The X-ray light curve of the afterglow of
GRB 050315 (Granot et al. 2006; Nousek et al. 2006) shows a
remarkable resemblance to the optical/NIR light curve evolution
of the afterglow of GRB 080413B. If we neglect the very steep
tail of the prompt GRB emission, the initial XRT light curve of
GRB 050315 is dominated by the narrow jet, followed by a slight
rebrightening at around 1.5 ks caused by the wide jet in its pre-
deceleration phase. After the peak, the light curve decay is dom-
inated by the emission from the wide jet. Times of jet breaks of
narrow (∼9 ks) and wide (∼200 ks) components, as well as their
opening angles θw = 2θn = 3.2◦ (Granot et al. 2006), are within
an order comparable with those of GRB 080413B.

The X-ray light curve of the naked-eye GRB 080319B
(Racusin et al. 2008) shows similar evolution. The narrow jet
dominates the first ∼40 ks of the afterglow. After the narrow
jet decays, the wide jet dominates the late afterglow. There is
no rising part of the wide jet and thus no sharp rebrightening
or plateau, so the wide jet merely makes the decay flatter. The
optical light curve is missing the emission from the narrow jet,
suggesting that the optical flux from the wide jet must be much
stronger than that of the narrow jet. The jet break of the nar-
row jet at ∼2.8 ks, which corresponds to an extremely narrow
opening angle of 0.2◦, is the earliest of these three bursts. The
jet break of the wide component with opening angle ∼4◦ is, on

the other hand, the latest at roughly 1 Ms. In general, the X-
ray light curves of GRBs 050315, 080319B and the optical light
curve of GRB 080413B are very similar. However, the afterglow
of GRB 080413B is the only one showing both components in
the optical/NIR wavelengths, while the emission from the wide
jet in the X-rays is negligible. The X-ray flux from the wide jet
must then be much less prominent than for the narrow jet.

Following this line of reasoning the relative fluxes in opti-
cal/NIR and X-ray of the narrow and wide jets can be explained
in the following way. The SED of the narrow jet (intervals I
and II) shows a break, while that of the wider jet does not. For
both jets we have argued that we cover the slow cooling regime.
The spectral slope of the wide component implies that the cool-
ing break is at frequencies below the near-infrared bands. Both
the cooling frequency and the maximum power depend on the
product of Lorentz factor Γ of the shocked fluid and the mag-
netic field strength. It is generally assumed that the narrow jet
comes with a larger Lorentz factor than the wide one, and a sim-
ilar assumption can be reasonably made about the (self-created)
magnetic field. The SEDs of the two jets show us that the product
Γ∗B of the wide jet, and consequently also the emission at X-ray
energies, are at least a factor 100 less than for the narrow one.
Therefore, the wide jet does not contribute to the X-ray emis-
sion in any significant way. The situation is different in the opti-
cal/NIR since cooling break of the narrow jet leads to a reduced
flux by a factor of ≈10 relative to a spectrum with no cooling
break between the optical/NIR and X-rays. Consequently, the
optical/NIR emission of the wide jet is much more prominent
than for the narrow jet.

The values derived from the modeling of GRB 080413B
afterglow are fairly consistent with the collapsar jet breakout
model of Zhang et al. (2004b), where the numerical simulations
predict θn = 3−5◦, Γn � 100 for the narrow component and
θw ∼ 10◦, Γw ∼ 15 for the wide component (Peng et al. 2005).
The characteristic Lorentz factors are very similar to those of the
hydromagnetically accelerated, initially neutron-rich jet model
of Vlahakis et al. (2003), where Γn ∼ 200 and Γw ∼ 15. These
two models are distinguished by the ratio of the kinetic energy
injected into the two components. For values typical of the col-
lapsar model (Ew/En ∼ 0.1), Peng et al. (2005) predict that the
contribution of the narrow component dominates at all times.
However, for Ew � 2En (as in the neutron-rich hydromagnetic
model), the narrow component dominates at early times but the
contribution of the wide jet becomes dominant around the decel-
eration time of the wide jet. If Ew > En, the jet break of the nar-
row jet could be masked by the rise (and subsequent dominance)
of the flux from the wide jet as the deceleration time of the wide
component is approached. That the only visible jet break in the
optical light curve is the one of the wide jet may lead to over-
estimating the emitted gamma-ray energy if the opening angle
of the wide jet is used in converting the measured energy into
the beaming-corrected energy (see Peng et al. 2005, for detailed
discussion). Because the deceleration time of the wide compo-
nent is much longer than for the narrow component, a bump is
expected to show up in the decaying light curve of the narrow
component owing the emission of the wide component at its de-
celeration time. These predictions are in perfect agreement with
our data, suggesting that the two-component jet model can be
placed among models that explain the variability in the early
light curves of the GRB afterglows.
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Table 1. g′r′i′z′ photometric data.

Tmid − T0 [ks] Exposure [s] Brightnessa magAB

g′ r′ i′ z′

0.0765 30 16.19 ± 0.19
0.1158 30 16.46 ± 0.16
0.1549 30 16.65 ± 0.20
0.2334 110 16.93 ± 0.20
0.3421 35 17.44 ± 0.05 17.28 ± 0.03 17.24 ± 0.04 17.10 ± 0.05
0.4441 35 17.67 ± 0.04 17.53 ± 0.03 17.49 ± 0.04 17.37 ± 0.04
0.5443 35 17.86 ± 0.04 17.71 ± 0.03 17.73 ± 0.03 17.56 ± 0.04
0.6463 35 18.00 ± 0.04 17.86 ± 0.03 17.84 ± 0.04 17.67 ± 0.04
0.7646 35 18.11 ± 0.04 18.00 ± 0.04 18.01 ± 0.04 17.83 ± 0.05
0.8657 35 18.24 ± 0.04 18.10 ± 0.03 18.07 ± 0.04 17.89 ± 0.04
0.9677 35 18.29 ± 0.03 18.17 ± 0.03 18.15 ± 0.04 17.97 ± 0.04
1.0679 35 18.37 ± 0.04 18.21 ± 0.03 18.24 ± 0.04 18.05 ± 0.04
1.2390 35 18.49 ± 0.04 18.33 ± 0.04 18.32 ± 0.04 18.15 ± 0.05
1.3401 35 18.54 ± 0.04 18.39 ± 0.03 18.33 ± 0.04 18.21 ± 0.04
1.4394 35 18.57 ± 0.04 18.43 ± 0.03 18.45 ± 0.04 18.22 ± 0.04
1.5396 35 18.63 ± 0.04 18.45 ± 0.03 18.46 ± 0.04 18.29 ± 0.04
1.6813 35 18.63 ± 0.04 18.49 ± 0.04 18.49 ± 0.05 18.36 ± 0.05
1.7824 35 18.70 ± 0.03 18.54 ± 0.03 18.50 ± 0.04 18.40 ± 0.04
1.8835 35 18.72 ± 0.04 18.56 ± 0.03 18.56 ± 0.04 18.41 ± 0.04
1.9863 35 18.74 ± 0.03 18.58 ± 0.03 18.59 ± 0.04 18.45 ± 0.04
2.1021 35 18.77 ± 0.04 18.64 ± 0.04 18.62 ± 0.04 18.41 ± 0.05
2.2041 35 18.81 ± 0.04 18.64 ± 0.03 18.64 ± 0.04 18.47 ± 0.04
2.3034 35 18.83 ± 0.04 18.64 ± 0.04 18.64 ± 0.04 18.48 ± 0.04
2.4062 35 18.85 ± 0.04 18.72 ± 0.04 18.71 ± 0.04 18.58 ± 0.04
2.5237 35 18.88 ± 0.04 18.73 ± 0.04 18.65 ± 0.04 18.56 ± 0.06
2.6240 35 18.91 ± 0.04 18.76 ± 0.03 18.72 ± 0.04 18.57 ± 0.04
2.7242 35 18.91 ± 0.04 18.77 ± 0.03 18.77 ± 0.04 18.52 ± 0.04
2.8261 35 18.96 ± 0.04 18.81 ± 0.04 18.78 ± 0.04 18.61 ± 0.04
2.9428 35 19.00 ± 0.04 18.82 ± 0.04 18.85 ± 0.05 18.64 ± 0.05
3.0439 35 19.01 ± 0.03 18.84 ± 0.03 18.88 ± 0.04 18.69 ± 0.04
3.1441 35 19.03 ± 0.03 18.85 ± 0.03 18.83 ± 0.04 18.72 ± 0.05
3.2443 35 19.03 ± 0.04 18.88 ± 0.04 18.83 ± 0.04 18.69 ± 0.05
3.3566 35 19.06 ± 0.04 18.90 ± 0.04 18.87 ± 0.05 18.73 ± 0.06
3.4577 35 19.07 ± 0.04 18.92 ± 0.03 18.94 ± 0.04 18.72 ± 0.05
3.5580 35 19.10 ± 0.04 18.94 ± 0.03 18.91 ± 0.04 18.77 ± 0.05
3.6599 35 19.14 ± 0.04 18.94 ± 0.04 18.97 ± 0.04 18.83 ± 0.05
3.7731 35 19.11 ± 0.05 18.98 ± 0.04 18.96 ± 0.05 18.81 ± 0.06
3.8733 35 19.16 ± 0.05 18.95 ± 0.04 19.05 ± 0.05 18.83 ± 0.05
3.9735 35 19.13 ± 0.04 18.98 ± 0.04 19.03 ± 0.04 18.77 ± 0.04
4.0764 35 19.19 ± 0.04 19.06 ± 0.04 19.03 ± 0.05 18.81 ± 0.05
4.1913 35 19.20 ± 0.05 19.04 ± 0.04 18.98 ± 0.05 18.87 ± 0.06
4.2924 35 19.30 ± 0.04 19.06 ± 0.04 19.08 ± 0.04 18.92 ± 0.05
4.3943 35 19.24 ± 0.05 19.11 ± 0.04 19.00 ± 0.04 18.90 ± 0.05
4.4963 35 19.24 ± 0.04 19.10 ± 0.04 19.10 ± 0.05 18.85 ± 0.04
4.6172 35 19.29 ± 0.09 19.13 ± 0.05 19.03 ± 0.06 18.86 ± 0.08
4.7148 35 19.20 ± 0.06 19.15 ± 0.04 19.09 ± 0.05 18.86 ± 0.05
4.8159 35 19.24 ± 0.06 19.18 ± 0.04 19.13 ± 0.06 18.92 ± 0.07
4.9179 35 19.37 ± 0.07 19.10 ± 0.05 19.15 ± 0.08 18.95 ± 0.06

90.3010 2733 20.19 ± 0.04 19.91 ± 0.04 19.81 ± 0.05 19.65 ± 0.04
176.4193 3805 20.92 ± 0.05 20.55 ± 0.04 20.38 ± 0.05 20.27 ± 0.05
262.4098 3556 21.36 ± 0.04 21.00 ± 0.04 20.79 ± 0.04 20.57 ± 0.05
434.6533 4046 22.26 ± 0.05 22.01 ± 0.04 21.82 ± 0.06 21.51 ± 0.06
522.1878 3036 22.83 ± 0.12 22.46 ± 0.07 22.17 ± 0.11 22.22 ± 0.11
780.5056 3520 23.88 ± 0.30 23.50 ± 0.15 23.20 ± 0.18 23.49 ± 0.25

1901.2933 2989 24.69 ± 0.17 24.45 ± 0.23 >23.54 >23.34
2418.4846 7770 25.12 ± 0.19 24.90 ± 0.25 >23.78 >23.36
5185.0714 6995 25.61 ± 0.24 25.13 ± 0.22 >24.22 >23.87

Notes. (a) Not corrected for Galactic foreground reddening.

A113, page 8 of 9



R. Filgas et al.: The two-component jet of GRB 080413B

Table 2. JHKs photometric data.

Tmid − T0 [ks] Exposure [s] Brightnessa magAB
b

J H Ks

0.0956 10 16.19 ± 0.12
0.1746 10 16.97 ± 0.21
0.4251 168 17.30 ± 0.07 17.20 ± 0.07 16.92 ± 0.15
0.6275 168 17.71 ± 0.06 17.65 ± 0.08 17.19 ± 0.20
0.9392 385 18.03 ± 0.06 17.89 ± 0.07
1.4126 384 18.22 ± 0.07 18.14 ± 0.07 18.01 ± 0.12
2.0667 808 18.47 ± 0.07 18.48 ± 0.07 18.23 ± 0.11
3.3229 1637 (1216 for H) 18.69 ± 0.06 18.76 ± 0.07 18.38 ± 0.10
4.9974 2065 (1650 for J) 18.93 ± 0.06 18.91 ± 0.06 18.63 ± 0.08

90.3234 2780 19.42 ± 0.06 19.14 ± 0.05 19.00 ± 0.05
176.4426 3854 19.97 ± 0.05 19.81 ± 0.05 19.39 ± 0.05
262.4340 3605 20.23 ± 0.05 20.00 ± 0.05 19.91 ± 0.08
434.6775 4096 21.47 ± 0.08 21.48 ± 0.08 >20.28
522.2111 3084 22.03 ± 0.09 >21.60 >20.56
780.5298 3567 >22.16 >21.48 >20.55

1901.3193 3040 >21.96 >21.35 >20.57
2418.5088 7822 >22.36 >21.63 >20.90
5185.0938 7041 >22.57 >21.92 >20.97

Notes. (a) Not corrected for Galactic foreground reddening. Converted to AB magnitudes for consistency with Table 1. (b) For the SED fitting, the
additional error of the absolute calibration of 0.07 (J and H) and 0.09 (Ks) mag was added.

Table 3. Secondary standards in the GRB field in the GROND filter bands used for the calibration.

Star RA, Dec g′ r′ i′ z′ J H Ks

number [J2000] (magAB) (magAB) (magAB) (magAB) (magVega) (magVega) (magVega)
1 21:44:32.81, −19:58:39.4 18.05 ± 0.03 17.14 ± 0.03 16.93 ± 0.03 16.70 ± 0.03 15.75 ± 0.05 15.20 ± 0.05 15.03 ± 0.06
2 21:44:32.38, −19:58:45.1 18.90 ± 0.03 17.33 ± 0.03 16.08 ± 0.04 15.40 ± 0.03 14.11 ± 0.05 13.49 ± 0.05 13.23 ± 0.06
3 21:44:33.65, −19:58:07.7 17.25 ± 0.03 16.59 ± 0.03 16.47 ± 0.03 16.29 ± 0.03 15.46 ± 0.05 15.00 ± 0.05 14.82 ± 0.06
4 21:44:35.98, −19:57:47.9 16.41 ± 0.03 15.45 ± 0.03 15.15 ± 0.03 14.88 ± 0.03 13.87 ± 0.05 13.37 ± 0.05 13.15 ± 0.06
5 21:44:38.98, −19:59:09.2 16.26 ± 0.03 15.49 ± 0.03 15.28 ± 0.03 15.08 ± 0.03 14.13 ± 0.05 13.57 ± 0.05 13.42 ± 0.06
6 21:44:32.50, −19:59:44.2 16.10 ± 0.03 15.34 ± 0.03 15.19 ± 0.03 14.99 ± 0.03 14.19 ± 0.06 13.53 ± 0.05 13.52 ± 0.06
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