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Appendix A: Tables and Graphs 
 

Altitude Low Solar Activity Mean Solar Activity Extremely High Solar Activity 

(km) Density Pressure Density Pressure Density Pressure 

  (kg/m3) (Pa) (kg/m3) (Pa) (kg/m3) (Pa) 

  

   0 1.17E+00 1.01E+05 1.17E+00 1.01E+05 1.16E+00 9.98E+04 

20 9.48E-02 5.62E+03 9.49E-02 5.62E+03 9.41E-02 5.57E+03 

40 4.07E-03 3.01E+02 4.07E-03 3.02E+02 4.04E-03 2.99E+02 

60 3.31E-04 2.32E+01 3.31E-04 2.32E+01 3.28E-04 2.30E+01 

80 1.69E-05 9.81E-01 1.68E-05 9.45E-01 1.68E-05 8.42E-01 

100 5.77E-07 2.89E-02 5.08E-07 2.81E-02 2.78E-07 2.63E-02 

120 1.70E-08 1.92E-03 1.80E-08 2.17E-03 2.34E-08 3.55E-03 

140 2.96E-09 5.37E-04 3.26E-09 7.03E-04 4.93E-09 1.61E-03 

160 9.65E-10 2.13E-04 1.18E-09 3.31E-04 2.23E-09 9.90E-04 

180 3.90E-10 9.62E-05 5.51E-10 1.80E-04 1.28E-09 6.76E-04 

200 1.75E-10 4.70E-05 2.91E-10 1.05E-04 8.28E-10 4.86E-04 

 

 

Figure 1: Plot of wave frequency (obtained from atmospheric pressure and density) and 

atmospheric pressure vs. distance from Martian surface. 

Table 1: Atmospheric data of Earth 
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External points from which the waves originate 

k values 0.05 0.052278 0.065348 0.078417 0.091487 0.01 

(80,90,100) 1.44E-05 1.40E-05 1.31E-05 1.59E-05 2.28E-05 2.06E-05 

(500,2,5) 4.56E-06 4.43E-06 4.02E-06 4.69E-06 6.58E-06 6.46E-06 

(2,500,5) 5.56E-06 4.43E-06 4.02E-06 4.69E-06 6.58E-06 6.46E-06 

(2,5,500) 4.41E-06 4.30E-06 4.19E-06 5.43E-06 7.92E-06 6.45E-06 

(300,400,500) 3.17E-06 3.09E-06 2.89E-06 3.56E-06 5.11E-06 4.56E-06 
 

Table 2: Absolute errors of different wavenumbers with varying distances from the tested object 

 

 

Figure 2: Absolute errors of different wavenumbers with varying distances from the tested object 
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Superellipsoid shapes ranging from 0.9 to 1.8 
n-values  1.4 1.2 0.9 1.7 1.8 

(-4,-7,2) 3.12E-04 3.74E-04 5.23E-04 6.27E-04 8.03E-04 

(5,5,5) 2.55E-04 3.59E-04 4.63E-04 6.29E-04 8.18E-04 

(-6,1,7) 2.22E-04 2.88E-04 3.09E-04 6.10E-04 8.03E-04 

(8,-3,5) 1.85E-04 2.39E-04 2.41E-04 5.43E-04 7.03E-04 

(10,2,3) 1.80E-04 2.26E-04 2.49E-04 4.91E-04 6.29E-04 

(-3,10,4) 1.77E-04 2.12E-04 2.30E-04 4.70E-04 6.04E-04 

(8,9,2) 1.66E-04 1.83E-04 2.24E-04 4.23E-04 5.40E-04 

(5,-8,11) 1.41E-04 1.32E-04 1.34E-04 3.91E-04 5.16E-04 

(1,9,12) 1.36E-04 1.36E-04 1.23E-04 3.81E-04 5.04E-04 

(-1,-9,20) 9.34E-05 1.07E-04 7.37E-05 2.70E-04 3.61E-04 
 

Table 3: Varying shapes of superellipsoids from n = [0.5, 1.8] 

 

 

Figure 3: Varying shapes of superellipsoids from n = [0.5, 1.8] 
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 Absolute Errors for different wavenumbers 

k values  0.1 0.9 1 1.9 2.8 5.2 

(-4,-7,2) 1.20E-04 2.29E-04 2.42E-04 2.84E-04 5.81E-04 1.08E-03 

(5,5,5) 1.15E-04 2.21E-04 2.35E-04 3.46E-04 4.77E-04 1.91E-03 

(-6,1,7) 1.08E-04 2.08E-04 2.22E-04 3.74E-04 4.95E-04 1.64E-03 

(8,-3,5) 1.01E-04 1.93E-04 2.05E-04 2.86E-04 4.20E-04 1.36E-03 

(10,2,3) 9.36E-05 9.44E-05 1.90E-04 2.28E-04 4.37E-04 7.83E-04 

(-3,10,4) 8.90E-05 1.71E-04 1.81E-04 2.27E-04 3.96E-04 7.18E-04 

(8,9,2) 8.15E-05 1.57E-04 1.66E-04 1.88E-04 4.01E-04 9.34E-04 

(5,-8,11) 6.88E-05 1.32E-04 1.41E-04 2.40E-04 3.28E-04 1.03E-03 

(1,9,12) 6.63E-05 1.28E-04 1.36E-04 2.39E-04 3.26E-04 7.97E-04 

(-1,-9,20) 4.54E-05 8.71E-05 9.34E-05 1.78E-04 2.39E-04 2.98E-04 
 

Table 4: Comparison between different wave numbers from 0.1 to 5.2 

 

Figure 4: Comparison between different wave numbers from 0.1 to 5.2 
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Table 5: Number of terms added from the infinite series 

 

Figure 5: Number of terms added from the infinite series 
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 Absolute errors for finite numbers of terms from the infinite series 

# of Terms  20 15 10 5 

(5,5,5) 3.45E-04 5.35E-04 8.71E-04 8.96E-03 

(30,4,60) 1.11E-04 3.02E-04 7.14E-04 1.38E-03 

(2,70,80) 8.62E-05 1.91E-04 6.08E-04 8.00E-04 

(90,50,7) 7.10E-05 1.98E-04 4.49E-04 6.51E-04 

-100,110,120 6.66E-06 1.06E-05 1.20E-05 4.16E-04 
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Different wavenumbers obtained from extrapolated Martian atmospheric data 

Density 

[kg/m3] 

Pressure 

[Pa] 

Velocity 

[m/s] 

Frequency [Hz] 

4 5 6 7 

6.52E-11 5.624E-06 347.50645 0.0723231 0.0904039 0.1084846 0.1265654 

2.36E-11 2.648E-06 396.33918 0.0634122 0.0792653 0.0951183 0.1109714 

1.102E-11 1.44E-06 427.71499 0.0587605 0.0734506 0.0881407 0.1028309 

5.82E-12 8.4E-07 449.51291 0.0559111 0.0698888 0.0838666 0.0978443 

3.32E-12 5.152E-07 466.10408 0.0539209 0.0674011 0.0808813 0.0943615 

1.982E-12 3.272E-07 480.74950 0.0522782 0.0653478 0.0784174 0.0914869 

1.232E-12 2.128E-07 491.75012 0.0511088 0.0638860 0.0766631 0.0894403 

7.88E-13 1.416E-07 501.57114 0.0501008 0.0626350 0.0751625 0.0876891 

5.16E-13 9.6E-08 510.35783 0.0492453 0.0615567 0.0738683 0.0861793 

3.44E-13 6.56E-08 516.69792 0.0486411 0.0608013 0.0729616 0.0851219 

2.32E-13 4.552E-08 524.10844 0.0479533 0.0599417 0.0719301 0.0839183 

1.598E-13 3.184E-08 528.15593 0.0475858 0.0594823 0.0713788 0.0832752 

Table 6: Table of wavenumber from predetermined frequency 

 



Appendix B* 

1. Bessel functions of the first kind

Bessel functions of the first kind, denoted as Jα(x), are solutions of Bessel's differential equation that are

finite at the origin (x = 0) for integer or positive α, and diverge as x approaches zero for negative non-

integer α. It is possible to define the function by its Taylor series expansion around x = 0, which can be

found by applying the Frobenius method to Bessel's equation: 

𝐽𝛼(𝑥) = ∑
(−1)𝑚

𝑚! Γ(𝑚 + 𝛼 + 1)
(

𝑥

2
)

2𝑚+𝛼
∞

𝑚=0

where Γ(z) is the gamma function, a shifted generalization of the factorial function to non-integer values.

The Bessel function of the first kind is an entire function if α is an integer, otherwise it is a multivalued

function with singularity at zero. 

2. Galerkin Method

A method of determining coefficients 𝛼𝑘  in a power series solution

of the ordinary differential equation �̃�[𝑦(𝑥)] = 0 so that �̃�[𝑦(𝑥)], the result of applying the ordinary 

differential operator to y(x), is orthogonal to every 𝑦𝑘(𝑥) for k=1, ..., n (Itô 1980).

Galerkin methods are equally ubiquitous in the solution of partial differential equations, and in fact form 

the basis for the finite element method. 

3. Simply Connected

A pathwise-connected domain is said to be simply connected (also called 1-connected) if any simple

closed curve can be shrunk to a point continuously in the set. If the domain is connected but not simply, it 

is said to be multiply connected. In particular, a bounded subset E of R^2 is said to be simply connected if 

both E and R^2\E, where F\E denotes a set difference, are connected. 

A space S is simply connected if it is pathwise-connected and if every map from the 1-sphere to S extends

continuously to a map from the 2-disk. In other words, every loop in the space is contractible. 
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* This appendix provides additional techical concepts which are directly obtained from various 
mathematical online libraries such as WolframAlpha, Mathisfun and other math resources.



4. Laplace’s equation 

The scalar form of Laplace's equation is the partial differential equation 

 

∇2𝜓 = 0 

where ∇2 is the Laplacian. 

Note that the operator ∇2 is commonly written as Δ by mathematicians (Krantz 1999, p. 16). Laplace's 

equation is a special case of the Helmholtz differential equation 

∇2𝜓 + 𝑘2𝜓 = 0  with k=0 

A function 𝜓 which satisfies Laplace's equation is said to be harmonic. A solution to Laplace's equation 

has the property that the average value over a spherical surface is equal to the value at the center of the 

sphere (Gauss's harmonic function theorem). Solutions have no local maxima or minima. Because 

Laplace's equation is linear, the superposition of any two solutions is also a solution. 

5. Helmholtz Resonance 

Helmholtz resonance is the phenomenon of air resonance in a cavity, such as when one blows across the 

top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, 

the "Helmholtz resonator", which he, the author of the classic study of acoustic science, used to identify 

the various frequencies or musical pitches present in music and other complex sounds. 

 

where: 

𝛾 is the adiabatic index or ratio of specific heats. This value is usually 1.4 for air and diatomic gases. 

A is the cross-sectional area of the neck; 

m is the mass in the neck; 

𝑃0 is the static pressure in the cavity; 

𝑉0 is the static volume of the cavity. 

6. Drag Coefficient 

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or 

resistance of an object in a fluid environment, such as air or water. It is used in the drag equation, where a 

lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag 

coefficient is always associated with a particular surface area. 

The drag coefficient 𝑐𝑑  is defined as: 

𝑐𝑑 =
2𝐹𝑑

𝜌𝑣2𝐴
 

where: 
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𝐹𝑑 is the drag force, which is by definition the force component in the direction of the flow velocity,[6] 

𝜌 is the mass density of the fluid,[7] 

𝑣 is the speed of the object relative to the fluid, 

𝐴 is the reference area. 

7. Gauss Quadrature 

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually 

stated as a weighted sum of function values at specified points within the domain of integration. An n-

point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield 

an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the points xi and weights 

𝑤𝑖 for i = 1, ..., n. The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule 

is stated as 

 

Some low-order rules for solving the integration problem are listed below. 

Number of points, n Points, xi Weights, wi 

1 0 2 

2 
 

1 

3 

0 
 

 

 

4 
 

 

 

 

5 

0 
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