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Conformal Symmetries of the Energy–Momentum Tensor of
Spherically Symmetric Static Spacetimes
Ugur Camci 1,* and Khalid Saifullah 2

1 Department of Chemistry and Physics, Roger Williams University, One Old Ferry Road,
Bristol, RI 02809, USA

2 Department of Mathematics, Quaid-i-Azam University, Islamabad 453020, Pakistan; saifullah@qau.edu.pk
* Correspondence: ucamci@rwu.edu or ugurcamci@gmail.com

Abstract: Conformal matter collineations of the energy–momentum tensor of a general spherically
symmetric static spacetime are studied. The general form of these collineations is found when the
energy–momentum tensor is non-degenerate, and the maximum number of independent conformal
matter collineations is 15. In the degenerate case of the energy–momentum tensor, it is found
that these collineations have infinite degrees of freedom. In some subcases of degenerate energy–
momentum, the Ricci tensor is non-degenerate, that is, there exist non-degenerate Ricci inheritance
collineations.

Keywords: matter collineations; conformal collineations; static spherically symmetric spacetimes

1. Introduction

Recent observations indicate that the universe contains black holes whose horizons
are rotating at a speed close to that of light. General relativity (GR) suggests that the
dynamics near the horizon of such black holes are governed by a strong infinite-dimensional
conformal symmetry—similar to the one seen near the critical points of different condensed
matter systems. Researchers have explored possible observational consequences of such a
symmetry [1].

Symmetries and conformal symmetries play a very important role in mathematical
physics. One of the fundamental symmetries on a Riemannian manifold is that of the metric
tensor g, written mathematically as [2]

£ξg = 2σg. (1)

Here, σ is the conformal factor and £ξ represents the Lie derivative operator relative to the
vector field ξ, which gives isometries or Killing vectors (KVs) if the σ is zero, homothetic
motions (HMs) if it is a constant, and conformal Killing vectors (CKVs) if it is a function of
the coordinates xa. In component form, we can write the above equation as

gab,cξc + gacξc
,b + gcbξc

,a = 2σgab. (2)

Apart from the metric tensor, the other quantities fundamental to the Einstein field equa-
tions (EFEs)

Rab −
1
2

Rgab = κTab, (3)

are the stress–energy tensor, T, which describes the matter field in the manifold, the Ricci
tensor, R, which is a contraction of the curvature tensor, and the Ricci scalar R. In Equation (3),
κ is the coupling constant defined by κ = 8πG/c4, and G and c are Newton’s gravitational
constant and the speed of light, respectively. Thus, the symmetries of both the stress–energy
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tensor and the Ricci tensor play a significant role. These symmetries, known as matter
collineations (MCs) and Ricci collineations (RCs) [3], respectively, satisfy the equations

£ξT = 0, and £ξR = 0. (4)

Similarly, one can define collineations for the curvature and Weyl tensors [3].
Solutions of EFEs can be classified by requiring these symmetries and thus a com-

plete list of metrics with certain symmetry can be obtained [4]. Spacetimes have been
classified on the basis, for example, of KVs [5–7], HMs [8], CKVs [9,10], RCs [11–22] and
MCs [23–27]. This also provides a way to find new solutions of EFEs which are otherwise
very difficult to solve. These collineations have been generalized to define what are called
conformal collineations (or inheritance collineations [28,29]). Thus, we obtain conformal matter
collineations (CMCs)

£XT = 2ψ(xa)T, (5)

or conformal Ricci collineations (CRCs), defined by

£YR = 2φ(xa)R. (6)

Conformal symmetry is physically significant, as CKVs, for example, generate con-
stants of motion along the null geodesics for massless particles which are conserved
quantities. On the other hand, it is of mathematical interest to obtain classification by
conformal collineations and to investigate their relation with collineations. Though there
has been a good amount of literature on the study of CKVs, the interest in conformal
collineations is relatively recent. The complete classification of spherically symmetric static
spacetimes by their CRCs when the conformal factor φ is a constant has been carried
out in Ref. [30]. The CRCs with a non-constant φ have been studied for the Friedmann–
Robertson–Walker spacetimes [19], the general static spherically symmetric spacetimes [31],
the non-static spherically symmetric spacetimes [32] and Kantowski–Sachs spacetimes [33].
For pp-waves, the relationship between CRCs and CKVs has been studied in Ref. [10].
Recently, Akhtar et al. [34] have classified static plane symmetric spacetimes according to
CRCs. Further, the CRCs for the Einstein–Maxwell field equations in the case of non-null
electromagnetic fields have been investigated as well [35].

In this paper, we classify spherically symmetric static spacetimes by their CMCs.
The Equation (5) for CMCs in component form can be written as

Tab,cXc + TacXc
,b + TcbXc

,a = 2ψTab, (7)

where ψ is the conformal factor which is a function of all the spacetime coordinates
xa = (x0, x1, x2, x3). In this paper, we use the usual component notation in local charts
and a partial derivative will be denoted by a comma. Note that the above equation gives
MCs if ψ = 0, thus the classification of spherically symmetric static spacetimes by MCs [24]
becomes a special case of the classification obtained in this paper. We call a CMC proper if it
is neither a KV nor an MC. The set of all CMCs on the manifold is a vector space, but it may
be infinite-dimensional. If Tab is non-degenerate, i.e., det(Tab) 6= 0, then the Lie algebra of
CMCs is finite-dimensional. However, if Tab is degenerate, it may be infinite. Thus, in the
case of a non-degenerate energy–momentum tensor, i.e., det(Tab) 6= 0, we use the standard
results of conformal symmetries to obtain the maximal dimensions of the algebra of CMCs
as 15. Since Tab describes the distribution and motion of matter contents of a manifold,
and mathematically it is very similar to the the Ricci tensor, the study of MCs and CMCs
has a natural geometrical as well as physical significance.

In the next section, we setup the CMC equations for static spherically symmetric
spacetimes. In Section 3, these equations are solved when the energy–momentum tensor is
degenerate, while in Section 4, we obtain results when the tensor is non-degenerate. We
find that the degenerate case always gives infinite dimensional Lie algebras of CMCs. We
conclude with a brief summary and discussion in Section 5. Throughout the paper, we
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will consider four-dimensional spacetimes, and spacetime indices will be denoted by small
Latin letters (e.g., a, b, c,...). The metric has signature (+,−,−,−).

2. Equations for Conformal Matter Collineations

We consider a general, spherically symmetric, static spacetime in the usual spherical
coordinates

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

. (8)

The non-vanishing components of the Ricci tensor Rab = Rc
a cb for this metric are given by

R00 ≡ R0(r) =
1
4

eν−λ

(
2ν′′ + ν′

2 − ν′λ′ +
4
r

ν′
)

, (9)

R11 ≡ R1(r) = −
1
4

(
2ν′′ + ν′

2 − ν′λ′ − 4
r

λ′
)

, (10)

R22 ≡ R2(r) =
1
2

e−λ
[
r(λ′ − ν′)− 2

]
+ 1, (11)

R33 = sin2 θR2, (12)

and the Ricci scalar R = Ra
a is

R =
e−λ

2

[
2ν′′ + ν′2 − ν′λ′ +

4
r
(ν′ − λ′) +

4
r2 (1− eλ)

]
, (13)

where the prime represents derivative with respect to the radial coordinate r. Thus, we can
write the Ricci tensor form as

ds2
Ric ≡ Rabdxadxb = R0(r)dt2 + R1(r)dr2 + R2(r)

(
dθ2 + sin2 θdφ2

)
. (14)

The metric (8) has time-independent coefficients, and using the field Equation (3) with
c = 1 and G = 1

8π , i.e., κ = 1, the components of the energy–momentum tensor Tab become

T00 ≡ T0(r) =
1
r2 eν−λ

(
rλ′ + eλ − 1

)
, (15)

T11 ≡ T1(r) =
1
r2

(
rν′ − eλ + 1

)
, (16)

T22 ≡ T2(r) =
r2

4
e−λ

[
2ν′′ + ν′

2 − ν′λ′ +
2
r
(ν′ − λ′)

]
, (17)

T33 ≡ T3(r) = sin2 θT2. (18)

Similarly, the matter tensor form can be written as

ds2
Matter ≡ Tabdxadxb = T0(r)dt2 + T1(r)dr2 + T2(r)

(
dθ2 + sin2 θdφ2

)
. (19)

Using the above energy–momentum tensor components, the Ricci curvature scalar given
in (13) can be cast into the form

R = −e−νT0 + e−λT1 +
2
r2 T2 . (20)
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Further, when we state the energy–momentum tensor components given above in terms of
the Ricci tensor components (9)–(11), we find that

T0 =
1
2

(
R0 + eν−λ R1

)
+

eν

r2 R2, (21)

T1 =
1
2

(
eλ−νR0 + R1

)
− eλ

r2 R2, (22)

T2 =
r2

2

(
e−νR0 − e−λR1

)
. (23)

In GR, physical fields are described by the symmetric tensor Tab, which is the energy–
momentum tensor of the field. We have the covariant decomposition/identity for Tab as
follows [36]:

Tab = ρuaub − phab + 2q(aub) + πab , (24)

where hab = gab − uaub is the projection tensor, and the quantities ρ, p, qa and πab are
the physical variables representing the mass density, the isotropic pressure, the heat flux
and the traceless stress tensor, respectively, as measured by the observers ua. In the
above decomposition, Tab is described by two scalar fields (ρ, p), one spacelike vector
(qa, qaua = 0), and a traceless symmetric 2-tensor (πab, gabπab = 0). The irreducible parts
of Tab are defined as

ρ = uaubTab , (25)

p = −1
3

habTab , (26)

qa = habTbcuc , (27)

πab =

(
h c

a h d
b −

1
3

habhcd
)

Tcd , (28)

where ua is a timelike unit four-vector field normalized by uaua = 1. The energy–
momentum tensor Tab given in (24) represents the general anisotropic fluid, and reduces to
an anisotropic fluid without heat flux if qa = 0, an isotropic non-perfect fluid if πab = 0,
a perfect fluid if qa = 0 and πab = 0, and a dust if p = 0, qa = 0 and πab = 0. GR is
a classical theory of relativity, however, in the field Equation (3), the classical spacetime
geometry is also related to the stress–energy tensor of quantum matter. To overcome
this inconsistency, we need to embed GR (or its generalizations) within some quantum
mechanical framework, i.e., quantum gravity. For the metric ansatz (8), it is customary
to have the fluid to be at rest, because the spacetime is static, i.e., ua = u0δa

0. Then, using
the normalization condition of four-velocity, that is, uaua = 1, one can find u0 = e−ν/2.
Thus, we find from (27) that for this choice of observers the heat flux vanishes (qa = 0),
which is expected from the symmetries of the metric. In addition, under the latter choice of
observers, the remaining physical variables ρ, p and πab that follow from (25), (26) and (28)
are

ρ = e−νT0 , p =
1
3

(
e−λT1 +

2
r2 T2

)
, (29)

π00 = 0, π11 =
2
3

(
T1 −

eλ

r2 T2

)
, π22 = − r2

2
e−λπ11 , π33 = sin2 θ π22 . (30)
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If the choice of observers as a timelike four-vector field ua = u0δa
0 is not appropriate

for any reason, then we must apply the normalization condition of the four-velocity with
uaua = −1 by choosing the four-velocity as ua = u1δa

1 which is a spacelike four-vector,
since one can always normalize the four-velocity to±1. Then, we find for the metric (8) that
u1 = e−λ/2. For the spacelike four-vector, the projection tensor has the form hab = gab +
uaub. Then, this choice effects the mass density, the isotropic pressure p and the traceless
stress tensor πab due to Equations (25), (26) and (28) such that

ρ = e−λT1 , p = −1
3

(
e−νT0 −

2
r2 T2

)
, (31)

π11 = 0, π00 =
2
3

(
T0 +

eν

r2 T2

)
, π22 =

r2

2
e−νπ00 , π33 = sin2 θ π22 . (32)

In GR, it is conventional to restrict the possible energy–momentum tensors by im-
posing energy conditions. The energy conditions for the energy–momentum tensor Tab to
represent some known matter fields are the conditions that are coordinate-independent
restrictions on Tab. In the literature, there are five categories of energy conditions. These are
the trace energy conditions (TEC), null energy conditions (NEC), weak energy conditions
(WEC), strong energy conditions (SEC) and dominant energy conditions (DEC). The TEC
means that the trace of the energy–momentum tensor T = gabTab should always be positive
(or negative depending on the signature of metric). The NEC mathematically states that
Tabkakb ≥ 0 for any null vector ka, i.e., kaka =. On the other hand, the WEC requires that
Tabtatb ≥ 0 for all timelike vectors ta. The SEC states that Tabtatb ≥ 1

2 Ttctc for all timelike
vectors ta. The DEC includes the WEC, as well as the additional requirement that Tabtb is a
non-spacelike vector, i.e., TabTb

ctatc ≤ 0 [37,38]. For a perfect fluid, the energy conditions
are described as

TEC : ρ− 3p ≥ 0 ; NEC : ρ + p ≥ 0 ; WEC : ρ ≥ 0 , ρ + p ≥ 0 ; (33)

SEC : ρ + 3p ≥ 0 , ρ + p ≥ 0; DEC : ρ ≥ 0 , | p |≤ ρ . (34)

Thus, it is seen that the energy conditions are simple constraints on various linear
combinations of the energy density ρ and the pressure p. The matter, including both
positive energy density and positive pressure, which is called “normal” matter, satisfies
all the standard energy conditions. On the contrary, “exotic” matter violates any one of
the energy conditions. For example, the SEC is satisfied by “all known forms of energy”,
but not by the dark energy, where p = −ρ. We note that for the static and spherically
symmetric metric (8), one can find the null vector as ka = e−ν/2δa

0 + e−λ/2δa
1 by using the

condition kaka = 0. Then the NEC for the general anisotropic fluid (24) becomes

ρ + 3p− 2
r2 T2 ≥ 0 , (35)

which yields the perfect fluid energy condition taking T2 = pr2.
For the perfect fluid, it is easily seen that T0 = ρeν, T1 = peλ, T2 = pr2, i.e., T2 =

r2e−λT1, and T3 = sin2θT2, which yields πab = 0 as it should be, and these give rise to the
following relations

R0 =
eν

2
(ρ + 3p), R1 =

eλ

2
(ρ− p), R2 =

r2

2
(ρ− p), (36)

where ρ and p are, respectively, density and pressure of the fluid, which are

ρ =
e−λ

r2

(
rλ′ + eλ − 1

)
, p =

e−λ

r2

(
rν′ − eλ + 1

)
. (37)
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Further, the condition of isotropy of the pressure for the perfect fluid matter yields that

2ν′′ + ν′2 − ν′λ′ − 2
r
(
ν′ + λ′

)
+

4
r2

(
eλ − 1

)
= 0, (38)

which is equivalent to
r2R1 − eλR2 = 0 . (39)

In this case, the energy conditions for a barotropic equation of state p = p(ρ) are given by

ρ > 0, 0 ≤ p ≤ ρ, 0 ≤ dp
dρ
≤ 1 . (40)

The linear form of a barotropic equation of state is given by p = wρ, where w is the equation
of state parameter. For w = 0, 1/3 and 1, we obtain dust, incoherent radiation and stiff matter,
respectively.

For the spherically symmetric static spacetimes (8), Equation (7) takes the form:

T′i X1 + 2TiXi
,i = 2Tiψ, i = 0, 1, 2 (41)

T2

(
X2

,2 − cot θX2 − X3
,3

)
= 0, (42)

T0X0
,j + TjX

j
,0 = 0, j = 1, 2, 3 (43)

TjX
j
,k + TkXk

,j = 0, j, k = 1, 2, 3 (j 6= k) (44)

In the above equations, the summation convention is not assumed. For the non-degenerate
energy–momentum tensor Tab, after some tedious calculations similar to those performed
in Ref. [31], we see that the general solution of Equations (41)–(44) can be written as

X0 =
T2

T0

[
sin θ

(
A′1 sin φ− A′2 cos φ

)
+ A′3 cos θ

]
+ A4(t, r), (45)

X1 =
T2

T1

[
sin θ

(
A′1 sin φ− A′2 cos φ

)
+ A′3 cos θ

]
+ A5(t, r), (46)

X2 = − cos θ[A1 sin φ− A2 cos φ] + A3 sin θ + a1 sin φ− a2 cos φ, (47)

X3 = −cscθ[A1 cos φ + A2 sin φ] + cot θ(a1 cos φ + a2 sin φ) + a3, (48)

with the conformal function given by

ψ =

(
T′2

2T2
A′1 + A1

)
sin θ sin φ−

(
T′2

2T2
A′2 + A2

)
sin θ cos φ

+

(
T′2

2T2
A′3 + A3

)
cos θ +

T′2
2T2

A5(t, r), (49)

where A`(t, r), (` = 1, 2, 3, 4, 5), are integration functions and aj (j = 1, 2, 3) are constant
parameters, which give the three KVs of spherically symmetric spacetimes

X1 = sin φ ∂θ + cos φ cot θ ∂φ, X2 = cos φ ∂θ − sin φ cot θ ∂φ, X3 = ∂φ. (50)
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Further, the functions A`(t, r) in the above Equations (45)–(49) are subject to the
following constraint equations(√

T1

T2
A5

)′
= 0, (51)

T0 A′4 + T1 Ȧ5 = 0, (52)

2Ȧ4 +

(
T′0
T0
− T′2

T2

)
A5 = 0, (53)(√

T2

T0
Ȧj

)′
= 0, (54)

Äj +
T0

2T1

(
T′0
T0
− T′2

T2

)
A′j −

T0

T2
Aj = 0, (55)

A′′j +
1
2

(
T′2
T2
−

T′1
T1

)
A′j −

T1

T2
Aj = 0, (56)

where the dot represents the derivative with respect to time t, and j = 1, 2, 3. When
we solve the above constraint equations for possible cases of non-degenerate energy–
momentum tensor Tab, we obtain the corresponding CMCs for the spherically symmetric
static spacetimes (see Section 4). In the following section, we find CMCs for the degenerate
energy–momentum tensor of the spherically symmetric static spacetimes.

3. Conformal Matter Collineations for the Degenerate Matter Tensor

If the energy–momentum tensor is degenerate, that is, det(Tab) = 0, then we have the
following four possibilities: (D-A1) all of the Ta (a = 0, 1, 2, 3) are zero; (D-A2) one of the Ta
is non-zero; (D-A3) two of the Ta are non-zero; (D-A4) three of the Ta are non-zero.

Case (D-A1). This case corresponds to the vacuum (such as the Schwarzschild) spacetime
in which every vector is a CMC.

Case (D-A2). In this case, we have the subcases such that: (D-A2-i) T0 6= 0, Tj = 0, (j =
1, 2, 3); (D-A2-ii) T1 6= 0, Tk = 0, (k = 0, 2, 3).

Subcase (D-A2-i). In this subcase, we find

X0 = X0(t), X1 = (ψ− Ẋ0) 2T0
T′0

, Xα = Xα(xa) , (57)

where T′0 6= 0 and α = 2, 3. If T′0 = 0, i.e., T0 = c (a constant), then the CMCs takes the
following form

X0 =
∫

ψdt + a, X j = X j(xa), (58)

where a is an integration constant. The corresponding Lie algebra of the vector fields in
this subcase is infinite-dimensional because the vector fields given in (57) and (58) have
arbitrary components. For this subcase, using (21)–(23) we have

T0 = −2R0, R1 = eλ−νR0, R2 = r2e−νR0, (59)

which shows that all Ricci tensor components are non-zero, e.g., the Ricci tensor in this
subcase is non-degenerate. Furthermore, in this subcase we have the equation of state
p = 0 (dust) for the perfect fluid.

Subcase (D-A2-ii). Considering the constraints of this subcase, we obtain that

X1 = 1√
|T1|

[∫
ψ
√
| T1 |dr + a1

]
, Xk = Xk(xa), (60)
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where a1 is a constant of integration. Here, we again have infinite-dimensional Lie algebra
of vector fields. Using (21)–(23), we find

R0 = eν−λR1 , R2 = −r2e−λR1 , T1 = 2R1 , (61)

which are independent relations for any form of the energy–momentum tensor. It is obvious
that for this case, the choice of observers as a timelike four-vector field ua = e−ν/2δa

0 is
not appropriate, since it gives ρ = 0 due to the condition T0 = 0. Thus, we use the
spacelike four-velocity ua = e−λ/2δa

1 of the observers for the metric (8), which implies that
Equations (31) and (32) give

ρ = e−λT1 , p = 0 , πab = 0 . (62)

Thus, the dust fluid is also allowed in this subcase. Furthermore, all Ricci tensor components
for this subcase are non-zero. This means that the Ricci tensor is non-degenerate even
though the matter tensor is degenerate.

Case (D-A3). For this case, the possible subcases are given by (D-A3-i) Tp 6= 0, Tq =
0, (p = 0, 1 and q = 2, 3) and (D-A3-ii) Tp = 0, Tq 6= 0.

Subcase (D-A3-i). Here, by choosing a timelike four-velocity, the conditions T0 6= 0 6=
T1 and T2 = 0 = T3 mean that the fluid represents an anisotropic fluid without heat flux,
and then the physical quantities become

ρ = e−νT0 , p =
1
3

e−λT1 , (63)

π11 = 2eλ p , π22 = −pr2 , π33 = −pr2 sin2 θ . (64)

Using the transformations dr̄ = ψ
√
| T1 |dr, where r̄ = r̄(t, r), one finds

X0 = −
∫

( ˙̄r + ḟ )
ψT0

g(t)dr̄, X1 =
r̄ + f (t)√
| T1 |

, Xq = Xq(xa), (65)

where f (t) and g(t) are functions of integration, and the conformal factor ψ has the form

ψ =
2T0

(r̄ + f − 2T0)

[∫ ( ˙̄r + ḟ
ψ

). dr̄
T0
− ġ(t)

]
. (66)

For this case, it follows from the condition Tq = 0 that

R0 =
eν−λ

2r
(ν + λ)′ , R1 =

1
2r

(ν + λ)′ , (67)

T0 + eν−λT1 = 2R0 , e−νT0 − e−λT1 =
2
r2 R2 . (68)

We find from Equations (63) and (68) that

ρ + 3p = 2e−νR0 , ρ− 3p =
2
r2 R2 . (69)

These equations show that the conditions R0 ≥ eν/2 and R2 ≥ 0 should be satisfied in
order for the SEC and TEC to be valid, respectively. There is only one constraint equation
2ν′′ + ν′2 − ν′λ′ + 2

r (ν
′ − λ′) = 0 following from the condition T2 = 0 for this subcase. In

addition, all the Ricci tensor components are again non-zero, i.e., det(Rab) 6= 0, even if the
matter tensor is degenerate.

Subcase (D-A3-ii). For this subcase, considering the constraint T0 = 0 = T1, we find

λ′ =
1
r

(
1− eλ

)
= −ν′ , (70)
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which yields the following solution

ν(r) = ln
(

1− λ0

r

)
, λ(r) = ln

(
1

1− λ0
r

)
, (71)

where λ0 is an integration constant. The above solution is just the Schwarzschild met-
ric which gives Rab = 0, i.e., all Ri’s and Ti’s vanish identically. Therefore, there is a
contradiction with the condition T2 6= 0 6= T3 as an assumption that is not possible in
this subcase.

Case (D-A4). In this case, the possible subcases are (D-A4-i) T0 = 0, Tj 6= 0, (j = 1, 2, 3)
and (D-A4-ii) T1 = 0, Tk 6= 0, (k = 0, 2, 3).

Subcase (D-A4-i). In this subcase, the constraint T0 = 0 gives

λ′ =
1
r

(
1− eλ

)
, (72)

and

R0 = −2eν

(
e−λR1 +

1
r2 R2

)
,

T1 = −1
2

(
R1 +

4
r2 eλR2

)
, T2 = −3

2
r2e−λR1 − R2, (73)

where T1 = 1
r (ν + λ)′. For this case, the choice of a timelike four-velocity of the observers

is not allowed since T0 = 0 gives ρ = 0. So, we need to choose a spacelike four-velocity
such as ua = e−λ/2δa

r . Using Equations (31) and (32), this choice gives rise to an anisotropic
fluid without heat flux, as follows:

ρ = e−λT1 , p =
2

3r2 T2 ,

π00 = peλ , π11 = 0 , π22 =
1
2

pr2 , π33 = sin2 θ π22 . (74)

Here, Equation (72) has the following solution

λ(r) = ln

(
1

1− λ1
r

)
, (75)

where λ1 is a constant of integration. The equations given in (73) are second-order ordinary
differential equations in terms of ν. Then, using the λ(r) given by (75) in any of the three
equations of (73), one can solve the obtained second-order differential equation to find ν(r)
as

ν(r) = 2 ln

{
−ν0

4

√
1− λ1

r
+

ν1

2

[
r− 3λ1 +

3
2

λ1

√
1− λ1

r
ln
(

r +
√

r(r− λ1)−
λ1

2

)]}
, (76)

where ν0 and ν1 are constants of integration. The Ricci scalar of the obtained metric given
by (75) and (76) is

R =
8ν1

−ν0
√

r(r− λ1) + ν1

[
2r(r− 3λ1) + 3λ1

√
r(r− λ1) ln

(
r +

√
r(r− λ1)− λ1

2

)] , (77)
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and the Ri’s and Ti’s for this solution are

R0 =
1

4r2

{
−ν0

√
r(r− λ1) + ν1

[
2r(r− 3λ1) + 3λ1

√
r(r− λ1) ln

(
r +

√
r(r− λ1)−

λ1
2

)]}
, (78)

R1 = 0 , R2 =
2ν1r2

ν0
√

r(r− λ1)− ν1

[
2r(r− 3λ1) + 3λ1

√
r(r− λ1) ln

(
r +

√
r(r− λ1)− λ1

2

)] , (79)

T1 =
2

r(λ1 − r)
R2 , T2 = −R2 . (80)

Further, the matter density and pressure that come from Equations (74), (75) and (80) are

ρ =
2
r2 T2 , p =

1
3

ρ , (81)

which implies that the equation of state parameter w yields an incohorent radiation, i.e., w =
1/3. Finally, we conclude that the Ricci tensor is also degenerate in this case.

For this subcase, we obtain that X0 = X0(xa) and X j = X j(r, θ, φ) where the form of
X j is the same as in Equations (46)–(48), and the constraint Equations (51)–(56) yield the
following solution

Aj = bj cosh r̄ + dj sinh r̄, A5 = `

√
T2

T1
, (82)

where bj, dj and ` are constants. In this case, the conformal factor is given by

ψ =

(
T2,r̄

2T2
A1,r̄ + A1

)
sin θ sin φ−

(
T2,r̄

2T2
A2,r̄ + A2

)
sin θ cos φ

+

(
T2,r̄

2T2
A3,r̄ + A3

)
cos θ + `

T2,r̄

2T2
, (83)

where we have used the transformation dr = (T2/T1)
1/2dr̄. By considering (79) and (80),

the latter transformation yields r̄ = −
√

2 ln
(

r +
√

r(r− λ1)− λ1
2

)
. Thus, in addition to the

three KVs given in (50), it follows that the remaining CMCs and corresponding conformal
factors are

X4 = sinh r̄ cos θ∂r̄ + cosh r̄ sin θ ∂θ , ψ4 = cos θ

(
T2,r̄

2T2
sinh r̄ + cosh r̄

)
,

X5 = cosh r̄ cos θ ∂r̄ + sinh r̄ sin θ ∂θ , ψ5 = cos θ

(
T2,r̄

2T2
cosh r̄ + sinh r̄

)
,

X6 = sinh r̄ sin θ sin φ ∂r̄ − cosh r̄ ξ1 , ψ6 = sin θ sin φ

(
T2,r̄

2T2
sinh r̄ + cosh r̄

)
,

X7 = sinh r̄ sin θ cos φ ∂r̄ − cosh r̄ ξ2 , ψ7 = sin θ cos φ

(
T2,r̄

2T2
sinh r̄ + cosh r̄

)
, (84)

X8 = cosh r̄ sin θ sin φ ∂r̄ − sinh r̄ ξ1 , ψ8 = sin θ sin φ

(
T2,r̄

2T2
cosh r̄ + sinh r̄

)
,

X9 = cosh r̄ sin θ cos φ ∂r̄ − sinh r̄ ξ2 , ψ9 = sin θ cos φ

(
T2,r̄

2T2
cosh r̄ + sinh r̄

)
,

X10 = ∂r̄ , ψ10 =
T2,r̄

2T2
,

X11 = F(t, r, θ, φ)∂t , ψ11 = 0 ,

where F(t, r, θ, φ) is an arbitrary function, and we have defined ξ1 and ξ2 as follows

ξ1 = cos θ sin φ ∂θ + csc θ cos φ ∂φ , ξ2 = cos θ cos φ ∂θ − csc θ sin φ ∂φ . (85)
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In order to construct a closed algebra for vector fields (84), we find that F = F(t).
Hence, we have finite-dimensional Lie algebra of CMCs which has the following non-
vanishing commutators

[X1, X2] = X3, [X1, X3] = −X2, [X1, X4] = −X6, [X1, X5] = X8, [X1, X6] = X4,

[X1, X8] = X5, [X2, X3] = X1, [X2, X4] = −X7, [X2, X5] = −X9, [X2, X7] = X4,

[X2, X9] = X5, [X3, X6] = X7, [X3, X7] = −X6, [X3, X8] = X9, [X3, X9] = −X8,

[X4, X5] = −X10, [X4, X6] = X1, [X4, X7] = X2, [X4, X10] = −X5, [X5, X8] = −X1, (86)

[X5, X9] = −X2, [X5, X10] = −X4, [X6, X7] = −X3, [X6, X8] = −X10, [X6, X10] = −X8,

[X7, X9] = −X10, [X7, X10] = −X9, [X8, X9] = X3, [X8, X10] = −X6, [X9, X10] = −X7.

Subcase (D-A4-ii). For this subcase, where T1 = 0, we have ν′ = 1
r
(
eλ − 1

)
and thus

T0 = 1
r eν−λ(λ + ν)′. In addition, T0 and T2 in terms of Ri’s (i = 0, 1, 2) become

T0 = R0 + eν−λR1 , T2 =
r2

2

(
e−νR0 − e−λR1

)
, (87)

and

R2 =
r2

2

(
e−νR0 + e−λR1

)
. (88)

In this subcase, one can choose a timelike four-velocity of the observers such that
ua = e−νδa

t , which yields an anisotropic fluid without heat flux as

ρ = e−νT0 , p =
2

3r2 T2 , π11 = −eλ p , π22
r2

2
p , π33 = sin2 θ π22 . (89)

It is interesting to point out that we have a variable equation of state parameter w = 2
3 r2 eν,

i.e., p = 2
3 r2 eνρ when T0 = T2.

If T0 = T2, it follows from the constraint Equations (51)–(56) that Aj and A4 have the
following solutions

Aj = bj cosh r̄ + dj sinh r̄ , A4 = ` , (90)

where bj, dj and ` are integration constants. Then, the components of the CMC vector field
are obtained as

X0 = sin θ
[
A′1 sin φ− A′2 cos φ

]
+ A′3 cos θ + ` ,

X1 =
2T0

T′0
[ψ− sin θ(A1 sin φ− A2 cos φ)− A3 cos θ] , (91)

X2 = − cos θ(A1 sin φ− A2 cos φ) + A3 sin θ + a1 sin φ− a2 cos φ ,

X3 = − csc θ(A1 cos φ + A2 sin φ) + cot θ(a1 cos φ + a2 sin φ) + a3 ,

where T′0 6= 0, and ψ is an arbitrary conformal factor, that is, the component X1 is an
arbitrary function of the coordinates and so we have infinite dimensional algebra of CMCs.
If T0 6= T2, then, in addition to the three KVs given in (50), we have the following CMCs

X4 = sin θ sin φ G(r) ∂r − ξ1 , ψ4 = sin θ sin φ G(r) ,

X5 = sin θ cos φ G(r) ∂r̄ + ξ2 , ψ5 = sin θ cos φ G(r) , (92)

X6 = cos θ G(r) ∂r̄ + sin θ ∂θ , ψ6 = cos θ G(r) ,

X7 = ḟ (t) G(r) ∂r̄ + f (t) ∂t , ψ7 = ḟ (t)[1− G(r)] ,
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where G(r) ≡ 2T0/T2
(T0/T2)′

, (T0/T2)
′ 6= 0, and f (t) is an integration function. Thus, we again

have a finite-dimensional Lie algebra of CMCs, and non-zero commutators of the Lie algebra
have the following form:

[X1, X2] = X3 , [X1, X3] = −X2 , [X1, X4] = X6, [X1, X6] = −X4 ,

[X2, X3] = X1 , [X2, X5] = X6 , [X2, X6] = −X5 , [X3, X4] = X5 , (93)

[X3, X5] = −X4 , [X4, X5] = −X3 , [X4, X6] = −X1 , [X5, X6] = −X2 .

4. Conformal Matter Collineations for the Non-Degenerate Matter Tensor

In this section, we consider the CMCs in a non-degenerate case, i.e., det(Tab) 6= 0,
admitted by the static spherically symmetric spacetimes. Here, we consider the following
five possibilities of the non-degenerate matter tensor.

Case (ND-A). For this case, where none of the T′a (a = 0, 1, 2, 3) are zero, applying the
transformation dr =

√
T2/T1dr̄, we find that the the number of CMCs is 15, such that there

are three minimal KVs given in (50), and the remaining ones are

X4 = f1(t)[sin θ sin φ h1(r̄)Y− h2(r̄)ξ1] , ψ4 = f1(t)H1(r̄) sin θ sin φ ,

X5 = f2(t)[sin θ sin φ h1(r̄)Y− h2(r̄)ξ1] , ψ5 = f2(t)H1(r̄) sin θ sin φ ,

X6 =
1
b
[sin θ sin φ h2(r̄)Y− h1(r̄)ξ1] , ψ6 =

H2(r̄)
b

sin θ sin φ ,

X7 = f1(t)[− sin θ cos φ h1(r̄)Y + h2(r̄)ξ2] , ψ7 = − f1(t)H1(r̄) sin θ cos φ ,

X8 = f2(t)[− sin θ cos φ h1(r̄)Y + h2(r̄)ξ2] , ψ8 = − f2(t)H1(r̄) sin θ cos φ ,

X9 =
1
b
[− sin θ cos φ h2(r̄)Y + h1(r̄)ξ2] , ψ9 = −H2(r̄)

b
sin θ cos φ , (94)

X10 = f1(t)[cos θ h1(r̄)Y + h2(r̄) sin θ ∂θ ] , ψ10 = f1(t)H1(r̄) cos θ ,

X11 = f2(t)[cos θ h1(r̄)Y + h2(r̄) sin θ ∂θ ] , ψ11 = f2(t)H1(r̄) cos θ ,

X12 =
1
b
[cos θ h2(r̄)Y + h1(r̄) sin θ ∂θ ] , ψ12 =

H2(r̄)
b

cos θ ,

X13 = − f̈1
sinh r̄
a h2(r̄)

∂t + ḟ1 ∂r̄ , ψ13 = ḟ1
T2,r̄

2
√

T1T2
,

X14 = − f̈2
sinh r̄
a h2(r̄)

∂t + ḟ2 ∂r̄ , ψ14 = ḟ2
T2,r̄

2
√

T1T2
,

X15 = ∂t , ψ15 = 0 ,

where H1(r̄), H2(r̄), h1(r̄), h2(r̄), f1(t), f2(t) and Y are defined as follows:

H1(r̄) = h1(r̄)
T1T2,r̄

2T2
2

+ h2(r̄) , H2(r̄) = h2(r̄)
T1T2,r̄

2T2
2

+ h1(r̄) , (95)

h1(r̄) = a sinh r̄ + b cosh r̄ , h2(r̄) = a cosh r̄ + b sinh r̄ , (96)

f1(t) =

{
1
α sinh(αt) , for α2 > 0,
1
|α| sin(|α|t) , for α2 < 0, (97)

f2(t) =

{
1
α cosh(αt) , for α2 > 0,
− 1
|α| cos(|α|t) , for α2 < 0, (98)

Y =

√
T1T2

T0
∂t +

√
T2

T1
∂r =

√
T1T2

T0
∂t + ∂r̄ , (99)

and T0 = h2(r̄)2T2 , a and b are integration constants, and α is a constant of separation such
that

α2 =

{
a2 − b2 , for α2 > 0 ,
b2 − a2 , for α2 < 0 .

(100)
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For α2 = 0, after solving the constraint Equations (51)–(56), we find 12 CMCs as
follows: the KVs X1, X2, X3 given in (50), and

X4 = eβr̄[β sin θ sin φ Y− ξ1] , ψ4 = H(r̄)eβr̄ sin θ sin φ ,

X5 = c0 t X4 , ψ5 = c0 t ψ4 ,

X6 = eβr̄[−β sin θ cos φ Y + ξ2] , ψ6 = −eβr̄ H(r̄) sin θ cos φ ,

X7 = c0 t X6 , ψ7 = c0 t ψ6 ;

X8 = eβr̄[β cos θ Y + sin θ ∂θ ] , ψ8 = eβr̄ H(r̄) cos θ ,

X9 = c0 t X8 , ψ9 = c0 t ψ8 ; (101)

X10 =
1
2

(
e−2βr̄

β c2
0
− β t2

)
∂t + t ∂r̄ , ψ10 =

t T2,r̄

2
√

T1T2
,

X11 = −βt ∂t + ∂r̄ , ψ11 =
T2,r̄

2
√

T1T2
; X12 = ∂t , ψ12 = 0 ,

where H(r̄) is defined as

H(r̄) = β
T1T2,r̄

2T2
2

+ 1 , (102)

and T0 = c2
0e2βr̄T2, T1 = (c1e−2βr̄ + β)T2, β is a separation constant such that β = ±1, c0

and c1 are integration constants.

Case (ND-B). Three of the T′a are zero. In this case, we have the possibilities: (ND-B-i)
T′0 6= 0, T′j = 0, (j = 1, 2, 3) and (ND-B-ii) T′1 6= 0, T′k = 0, (k = 0, 2, 3).

Subcase (ND-B-i). For this subcase, we have 15 CMCs which are in the same form
as (94) together with the KVs X1, X2, X3 given in (50), under the transformations r̄ → k r,
h1(r̄)→ h1(r) = a sinh(kr) + b cosh(kr), h2(r̄)→ h2(r) = a cosh(kr) + b sinh(kr), H1(r̄)→
h2(r) and H2(r̄)→ h1(r), where k = c1/c2, and a, b, c1, c2 are non-zero constants, and

T1 = ±c2
1, T2 = ±c2

2, α2 = ±(a2 − b2)/c2
2 , T0 = [a cosh(k r) + b sinh(k r)]2 . (103)

Here, we note that the vector fields X13, X14 and X15 are MCs since the scale factors for
those are zero, i.e., ψ13 = 0, ψ14 = 0 and ψ15 = 0.

When α2 = 0, one finds that there are 15 CMCs which are the KVs X1, X2, X3 given
in (50) and

X4 = β K−(t, r) sin θ sin φ Y− K+(t, r) ξ1 , ψ4 = K+(t, r) sin θ sin φ ,

X5 =
c0 β

c1
eβ rt[sin θ sin φ Y− ξ1] , ψ5 =

c0 β

c1
eβ rt sin θ sin φ ,

X6 = eβ r[sin θ sin φ Y− ξ1] , ψ6 = eβ r sin θ sin φ ,

X7 = −β K−(t, r) sin θ cos φ Y + K+(t, r)ξ2 , ψ7 = −K+(t, r) sin θ cos φ ,

X8 =
c0 β

c1
eβ rt[− sin θ cos φ Y + ξ2] , ψ8 = − c0 β

c1
eβ rt sin θ cos φ ,

X9 = eβ r[− sin θ cos φ Y + ξ2] , ψ9 = −eβ r sin θ cos φ , (104)

X10 = β K−(t, r) cos θ Y + K+(t, r) sin θ ∂θ , ψ10 = K+(t, r) cos θ ,

X11 =
c0 β

c1
eβ rt[cos θ Y + sin θ ∂θ ] , ψ11 =

c0 β

c1
eβ rt cos θ ,

X12 = eβ r[cos θ Y + sin θ ∂θ ] , ψ12 = eβ r cos θ ,

X13 =
1
2

(
T1 e−2β r

β c2
0
− β t2

)
∂t + t ∂r , ψ13 = 0 ,

X14 = −β t ∂t + ∂r , ψ14 = 0 ,

X15 = ∂t , ψ15 = 0 ,
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where β is an integration constant, T0 = c2
0e2βr, T1 = ±c2

1, β2 = T1/T2, Y is given in (99),
and K±(t, r) is defined as

K±(t, r) =
1
2

(
c0 β

c1
eβ rt2 ± c1

c0 β
e−β r

)
. (105)

It is explicitly seen from (104) that in addition to the KVs X1, X2, X3 given in (50), the vector
fields X13, X14 and X15 are MCs.

Subcase (ND-B-ii). In this case, where T0, T2 and T3 are constants, one can easily find
that the number of CMCs is six, and these reduce to the MCs which are given by three KVs
X1, X2, X3 given in (50), and the remaining ones

X4 = ∂t , X5 = ∂r̄ , X6 = r̄∂t − t∂r̄ , (106)

where we have used the rescaling dr̄ =
√

T1dr.

Case (ND-C). Two of the T′a are zero. In this case, the possible subcases are (ND-C-i)
T′p 6= 0, T′q = 0, (p = 0, 1 and q = 2, 3) and (ND-C-ii) T′p = 0, T′q 6= 0.

Subcase (ND-C-i). For this subcase, where T2, T3 are constants, we find 15 CMCs that
are similar to the ones given in (94). Here, the functions f1(t) and f2(t) are respectively
the same form given in Equations (97) and (98), and the vector field Y has the form
Y =

√
T1

T0
∂t + ∂r̄. In addition, the functions h1(r̄), h2(r̄), H1(r̄) and H2(r̄) in this subcase

have the following form

h1(r̄) = a sinh
(

r̄
c2

)
+ b cosh

(
r̄
c2

)
, h2(r̄) =

1
c2

[
a cosh

(
r̄
c2

)
+ b sinh

(
r̄
c2

)]
, (107)

H1(r̄) = h2(r̄) , H2(r̄) = h1(r̄) , (108)

with dr = dr̄/
√
|T1|, T0 = T2 h2(r̄)2 , T2 = c2

2 and α2 = ±(a2 − b2)/T2. The CMCs X13, X14
and X15 of this subcase reduce to MCs since the scale factors of these vector fields are zero.

When α2 = 0, there are 12 CMCs which are in the form (101), by replacing βY→ Y =√
T1

T0
∂t + ∂r̄ and H(r̄)→ 1. For this subcase, the CMCs X10, X11 and X12 become MCs due to

ψ10 = 0 = ψ11 and ψ12 = 0.
Subcase (ND-C-ii). In this subcase, where T0, T1 are constants, there appears a con-

stant of separation α that is given by the following constraint equation

T0

2T1
√

T2

(
T′2√
T2

)′
= α2 . (109)
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Then, it follows for α2 6= 0 that there are 15 CMCs such that the KVs X1, X2, X3 given in (50)
and

X4 = −
√

T0 f3(t)
(

T2,r̄

2
sin θ sin φ Z +

1√
T2

ξ1

)
, ψ4 = f3(t)H3(r̄) sin θ sin φ ,

X5 = −
√

T0 f4(t)
(

T2,r̄

2
sin θ sin φ Z +

1√
T2

ξ1

)
, ψ5 = f4(t)H3(r̄) sin θ sin φ ,

X6 = −T1
√

b sin θ sin φ Z− bT2,r̄√
T2

ξ1 , ψ6 = H4(r̄) sin θ sin φ ,

X7 =
√

T0 f3(t)
(

T2,r̄

2
sin θ cos φ Z +

1√
T2

ξ2

)
, ψ7 = − f3(t)H3(r̄) sin θ cos φ ,

X8 =
√

T0 f4(t)
(

T2,r̄

2
sin θ cos φ Z +

1√
T2

ξ2

)
, ψ8 = − f4(t)H3(r̄) sin θ cos φ ,

X9 = T1
√

b sin θ cos φ Z +
bT2,r̄√

T2
ξ2 , ψ9 = −H4(r̄) sin θ cos φ , (110)

X10 =
√

T0 f3(t)
(
−T2,r̄

2
cos θ Z +

sin θ√
T2

∂θ

)
, ψ10 = f3(t)H3(r̄) cos θ ,

X11 =
√

T0 f4(t)
(
−T2,r̄

2
cos θ Z +

sin θ√
T2

∂θ

)
, ψ11 = f4(t)H3(r̄) cos θ ,

X12 = −T1
√

b cos θ Z +
bT2,r̄√

T2
sin θ ∂θ , ψ12 = H4(r̄) cos θ ,

X13 =

(
a
2

f1 −
T1

T0
f̈1r̄
)

∂t + T2 ḟ1 ∂r̄ , ψ13 = ḟ1
T2,r̄

2
,

X14 =

(
a
2

f2 −
T1

T0
f̈2r̄
)

∂t + T2 ḟ2 ∂r̄ , ψ14 = ḟ2
T2,r̄

2
,

X15 = ∂t , ψ15 = 0 ,

where H3(r̄), H4(r̄), f3(t), f4(t) and Z are defined as follows:

H3(r̄) =

√
T0

T2

(
1−

T2
2,r̄

4T2

)
, H4(r̄) =

(
b− T1

√
b

T2

)
T2,r̄√

T2
, (111)

f3(t) =

{
1
α sin(αt) , for α2 > 0,
1
|α| sinh(|α|t) , for α2 < 0, (112)

f4(t) =

{
1
α cos(αt) , for α2 > 0,
− 1
|α| cosh(|α|t) , for α2 < 0, (113)

Z =
1
T0

∂t +

√
T2

T1
∂r̄ . (114)

Here, Equation (109) becomes
T0T2,r̄r̄

2T1
= α2 , (115)

by using the transformation dr = dr̄/
√
|T2|, and it has a solution T2 = α2T1

T0
r̄2 + a r̄ + b,

where a and b are integration constants. Further, we have a relation T0 = 4b α2T1/(a2− 4T1)
from the constraint Equation (56).

If we consider the possibility α2 = 0 in (115), it yields T2 = a r̄ + b. Then, one can find
15 CMCs which are three KVs X1, X2, X3 given in (50), and the following proper CMCs
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X4 = −
√

T0 t
(

a
2

sin θ sin φ Z +
1√
T2

ξ1

)
, ψ4 = tH3(r̄) sin θ sin φ ,

X5 =
t
2

X4 , ψ5 =
t
2

ψ4

X6 = − 1
2a

sin θ sin φ Z− 1√
T2

ξ1 , ψ6 = H5(r̄) sin θ sin φ ,

X7 =
√

T0 t
(

a
2

sin θ cos φ Z +
1√
T2

ξ2

)
, ψ7 = −tH3(r̄) sin θ cos φ ,

X8 =
t
2

X7 , ψ8 =
t
2

ψ7 ,

X9 =
1
2a

sin θ cos φ Z +
1√
T2

ξ2 , ψ9 = −H5(r̄) sin θ cos φ , (116)

X10 =
√

T0 t
(
− a

2
cos θ Z +

sin θ√
T2

∂θ

)
, ψ10 = tH3(r̄) cos θ ,

X11 =
t
2

X10 , ψ11 =
t
2

ψ10 ,

X12 = − 1
2a

cos θ Z +
sin θ√

T2
∂θ , ψ12 = H5(r̄) cos θ ,

X13 =
a
2

(
t2

2
− r̄√

T0

)
∂t +

2T2

a
t ∂r̄ , ψ13 = t ,

X14 = t ∂t +
2T2

a
∂r̄ , ψ14 = 1 ,

X15 = ∂t , ψ15 = 0 ,

where r = 2
a

√
a r̄ + b, T1 = a2/4, and H5(r̄) is defined by

H5(r̄) =
1√
T2

(
1− a3

4T2

)
. (117)

Case (ND-D). One of the T′a is zero. In this case, the possibilities are (ND-D-i) T′0 = 0, T′j 6=
0, (j = 1, 2, 3) and (ND-D-ii) T′1 = 0, T′k 6= 0, (k = 0, 2, 3).

In the subcase (ND-D-i), if α2 6= 0, then one obtains 15 CMCs as given by (50) and (94)
in the case (ND-A), in which the differences are the conditions T0 = c2

0, T2 = [a cosh r̄ +
b sinh r̄]−2, and α2 = ±T0(a2 − b2) which is a separation constant. In addition, when
α2 = 0, we find 12 CMCs which are in the same form as (101) in the case (ND-A), where
the differences are T0 = c2

0 and T2 = c2
2e−2βr̄.

For the subcase (ND-D-ii), we again find 15 CMCs for α2 6= 0, which are in the
same form as given in (50) and (94), and the differences come from the constraints as
T1 = c2

1, T0 = T2[a cosh r̄ + b sinh r̄]2, and α2 = ±(a2 − b2)/T1. Further, if α2 = 0, then we
find 12 CMCs which are in the same form as in (50) and (101) together with the constraints
T1 = c2

1, T0 = c2
0T2e2βr̄ and β2 = 1.

Case (ND-E). All T′a are zero. In this case, the constraints are T0 = c0, T1 = c1, T2 = c2,
where c0, c1 and c2 are non-zero constants. Using these constraints, it follows that in
addition to the three KVs given in (50) there are three additional CMCs such as

X4 = t ∂r −
c1

c0
r ∂t , X5 = ∂r , X6 = ∂t , (118)

with ψ4, ψ5, ψ6 = 0, which means that these CMCs reduce to MCs.
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Here, using the constraints T0 = c0, T1 = c1, T2 = c2 in Equations (15)–(17), we have
the following ordinary differential equations:

λ′ =
1
r

(
1− eλ

)
+ c0 r eλ−ν , (119)

ν′ =
1
r

(
eλ − 1

)
+ c1 r , (120)

2ν′′ + ν′2 − ν′λ′ +
2
r
(ν′ − λ′)− 4

r2 c2eλ = 0 . (121)

Then, putting λ′ and ν′ given above into (121), yields

e2λ−ν − (c1 r2 + 1)eλ−ν + (3c1 r2 − 4c2)
eλ

c0 r2 +
c1

c0
(c1r2 + 1) = 0 , (122)

which gives

eν =
c0 eλ

[
eλ − (c1 r2 + 1)

](
4c2
r2 − 3c1

)
eλ − c1(c1 r2 + 1)

. (123)

Thus, the physical variables ρ, p and πab for this case are

ρ =

(
4c2
r2 − 3c1

)
− c1(c1 r2 + 1) e−λ

eλ − c1 r2 − 1
, p =

1
3

(
c1 e−λ +

2c2

r2

)
, (124)

π11 =
2
3

(
c1 −

c2

r2 eλ
)

, π22 = − r2

2
e−λπ11 , π33 = sin2 θπ22 , (125)

with the choice of timelike observers. Note that the prefect fluid which requires πab = 0
is not allowed in this case since Equations (119)–(121) are not equivalently satisfied for
eλ(r) = c1 r2/c2 and ν(r) that comes from (123).

The vector fields for cases (ND-A)-(ND-D) are CMCs of the original metric (8), which
are 15 for α2 6= 0 and 12 for α2 = 0 in almost all cases. In addition, we can employ an
anisotropic fluid without heat flux for all cases in this section.

5. Conclusions

Symmetries of the metric tensor on a manifold, such as KVs, HMs and CKVs, have
finite-dimensional Lie algebras as the metric tensor is always non-degenerate. The maxi-
mum dimension for the Killing algebras (in four-dimensional space) is 10, for HMs it is
11 and for CKVs it is 15. However, there is no such guarantee for other tensors which can
be degenerate as well as non-degenerate. Thus, the Lie algebras for RCs, MCs, etc., can
be finite as well as infinite. When the tensor is non-degenerate, the algebra of RCs and
MCs is finite and the maximum dimension is 10, but for the degenerate tensor it can be
finite as well as infinite. For conformal collineations, the maximum dimension is 15 for the
non-degenerate tensor. For the degenerate case, finite dimensionality is not guaranteed.

In this work, we have completely classified CMCs for static spherically symmetric
spacetimes which are not of Bertotti–Robinson type. We have seen in Section 3 that if the
energy–momentum tensor is degenerate, i.e., det(Tab) = 0, then the CMCs have infinite
degrees of freedom. In Section 4, in which the non-degenerate case where det(Tab) 6= 0 is
considered, there are fifteen CMCs if the separation constant is not zero, or twelve CMCs if
the separation constant vanishes. In the cases (ND-B-ii) and (ND-E) of six dimensional Lie
algebras, the conformal factor comes out to be zero, and thus, they are actually MCs and
not CMCs.

We point out that in degenerate case (D-A4-i), we found an exact spherically symmetric
solution of the form
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ds2 =

[
−ν0

4

√
1− 2M

r
+

ν1

2

{
r− 6M + 3M

√
1− 2M

r
ln
(

r +
√

r(r− 2M)−M
)}]2

dt2

− dr2

1− 2M
r
− r2

(
dθ2 + sin2 θ dφ2

)
, (126)

where we have taken λ1 = 2M. This new metric is a radiation-dominated fluid solution for
EFEs. It is interesting to note from Equation (35) that the NEC for the above solution reads
p ≥ 0. For this metric, the Ricci scalar becomes

R =
8ν1

−ν0
√

r(r− 2M) + 2ν1

[
r(r− 6M) + 3M

√
r(r− 2M) ln

(
r +

√
r(r− 2M)−M

)] . (127)

This metric reduces to the well-known form of Schwarzschild solution if ν0 = −4 and
ν1 = 0. The above solution admits eleven CMCs, which are given in (50) and (84), and they
have finite-dimensional Lie algebra.

For the sake of completeness, we shortly touch on the possible extension of similar
studies in generic dimensions. It is well-known that the spherically symmetric metrics
continue to exist in spacetimes of dimensions greater than four. However, it will be
much more complicated to solve the symmetry equations even for static and spherically
symmetric spacetimes in higher dimensions.
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