Minimal length maximal green sequences and triangulations of polygons

Abstract

We use combinatorics of quivers and the corresponding surfaces to study maximal green sequences of minimal length for quivers of type \(\mathbb {A}\). We prove that such sequences have length \(n+t\), where n is the number of vertices and t is the number of 3-cycles in the quiver. Moreover, we develop a procedure that yields these minimal length maximal green sequences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Adachi, T., Iyama, O., Reiten, I.: \(\tau \)-tilting theory. Compos. Math. 150(3), 415–452 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Alim, M., Cecotti, S., Córdova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete N= 2 quantum field theories. Commun. Math. Phys. 323, 1185–1227 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brüstle, T., Dupont, G., Perotin, M.: On maximal green sequences. Int. Math. Res. 2014(16), 4547–4586 (2014)

  4. 4.

    Brüstle, T., Hermes, S., Igusa, K., Todorov, G.: Semi-invariant pictures and two conjectures on maximal green sequences (2015). arXiv:1503.07945

  5. 5.

    Brüstle, T., Qiu, Y.: Tagged mapping class groups: Auslander–Reiten translation. Math. Z. 279(3–4), 1103–1120 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Brüstle, T., Yang, D.: Ordered exchange graphs (2014). arXiv:1302.6045

  7. 7.

    Bucher, E.: Maximal green sequences for cluster algebras associated to the n-torus (2014). arXiv:1412.3713

  8. 8.

    Bucher, E., Mills, M.: Maximal green sequences for cluster algebras associated to the orientable surfaces of genus n with arbitrary punctures (2015). arXiv:1503.06207

  9. 9.

    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (\(A_n\) case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces. Part II: lambda lengths (2012). arXiv:1210.5569

  13. 13.

    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Fomin, S., Zelevinsky, A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Garver, A., McConville, T.: Lattice properties of oriented exchange graphs and torsion classes (2015). arXiv:1507.04268

  16. 16.

    Garver, A., Musiker, G.: On maximal green sequences for type A quivers (2014). arXiv:1403.6149

  17. 17.

    Kase, R.: Remarks on lengths of maximal green sequences for quivers of type \(\tilde{A}_{n,1}\) (2015). arXiv:1507.02852

  18. 18.

    Keller, B.: On cluster theory and quantum dilogarithm identities. In: Skowronski, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics, pp. 85–116. EMS Series of Congress Reports, European Mathematical Society, Helsinki (2011)

    Chapter  Google Scholar 

  19. 19.

    Ladkrani, S.: On cluster algebras from once punctured closed surfaces (2013). arXiv:1310.4454

  20. 20.

    Mozgovoy, S., Reineke, M.: On the noncomutative Donaldson–Thomas invariants arising from brane tiltings. Adv. Math. 223, 1521–1544 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation (2015). arXiv:1503.04675

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Serhiyenko.

Additional information

This research was carried out at the University of Connecticut 2015 math REU funded by National Science Foundation under DMS-1262929. The fourth author was also supported by the National Science Foundation CAREER Grant DMS-1254567.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cormier, E., Dillery, P., Resh, J. et al. Minimal length maximal green sequences and triangulations of polygons. J Algebr Comb 44, 905–930 (2016). https://doi.org/10.1007/s10801-016-0694-6

Download citation

Keywords

  • Maximal green sequence
  • Cluster algebra
  • Surface triangulation