Abstract
We use combinatorics of quivers and the corresponding surfaces to study maximal green sequences of minimal length for quivers of type \(\mathbb {A}\). We prove that such sequences have length \(n+t\), where n is the number of vertices and t is the number of 3-cycles in the quiver. Moreover, we develop a procedure that yields these minimal length maximal green sequences.
This is a preview of subscription content, access via your institution.
References
- 1.
Adachi, T., Iyama, O., Reiten, I.: \(\tau \)-tilting theory. Compos. Math. 150(3), 415–452 (2014)
- 2.
Alim, M., Cecotti, S., Córdova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete N= 2 quantum field theories. Commun. Math. Phys. 323, 1185–1227 (2013)
- 3.
Brüstle, T., Dupont, G., Perotin, M.: On maximal green sequences. Int. Math. Res. 2014(16), 4547–4586 (2014)
- 4.
Brüstle, T., Hermes, S., Igusa, K., Todorov, G.: Semi-invariant pictures and two conjectures on maximal green sequences (2015). arXiv:1503.07945
- 5.
Brüstle, T., Qiu, Y.: Tagged mapping class groups: Auslander–Reiten translation. Math. Z. 279(3–4), 1103–1120 (2015)
- 6.
Brüstle, T., Yang, D.: Ordered exchange graphs (2014). arXiv:1302.6045
- 7.
Bucher, E.: Maximal green sequences for cluster algebras associated to the n-torus (2014). arXiv:1412.3713
- 8.
Bucher, E., Mills, M.: Maximal green sequences for cluster algebras associated to the orientable surfaces of genus n with arbitrary punctures (2015). arXiv:1503.06207
- 9.
Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (\(A_n\) case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)
- 10.
Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)
- 11.
Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)
- 12.
Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces. Part II: lambda lengths (2012). arXiv:1210.5569
- 13.
Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)
- 14.
Fomin, S., Zelevinsky, A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)
- 15.
Garver, A., McConville, T.: Lattice properties of oriented exchange graphs and torsion classes (2015). arXiv:1507.04268
- 16.
Garver, A., Musiker, G.: On maximal green sequences for type A quivers (2014). arXiv:1403.6149
- 17.
Kase, R.: Remarks on lengths of maximal green sequences for quivers of type \(\tilde{A}_{n,1}\) (2015). arXiv:1507.02852
- 18.
Keller, B.: On cluster theory and quantum dilogarithm identities. In: Skowronski, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics, pp. 85–116. EMS Series of Congress Reports, European Mathematical Society, Helsinki (2011)
- 19.
Ladkrani, S.: On cluster algebras from once punctured closed surfaces (2013). arXiv:1310.4454
- 20.
Mozgovoy, S., Reineke, M.: On the noncomutative Donaldson–Thomas invariants arising from brane tiltings. Adv. Math. 223, 1521–1544 (2010)
- 21.
Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation (2015). arXiv:1503.04675
Author information
Affiliations
Corresponding author
Additional information
This research was carried out at the University of Connecticut 2015 math REU funded by National Science Foundation under DMS-1262929. The fourth author was also supported by the National Science Foundation CAREER Grant DMS-1254567.
Rights and permissions
About this article
Cite this article
Cormier, E., Dillery, P., Resh, J. et al. Minimal length maximal green sequences and triangulations of polygons. J Algebr Comb 44, 905–930 (2016). https://doi.org/10.1007/s10801-016-0694-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Maximal green sequence
- Cluster algebra
- Surface triangulation