Document Type


Publication Date



Published in: Marien Biology, Vol. 124, Issue 3, 1995.


The mechanical basis of prey capture by scyphomedusae has been largely ignored, despite the importance of these predators in a variety of planktonic ecosystems. Interactions between swimming, fluid motions, and prey capture were examined during 1991–1992 for a species from the three scyphozoan orders having planktonic medusae: Rhizostomeae, Stomolophus meleagris Agassiz, 1862; Coronatae, Linuche unguiculata (Schwartz, 1788); and Semaeostomeae, Cyanea capillata (Linnaeus, 1758). All three species used flow created during bell pulsation to capture prey, but the type of flow used for prey capture and the capture surface morphology were different for each species. The mechanics of capture by these species of diverse morphology and taxonomic affinity suggests that the use of bell pulsation-induced flow for prey entrainment and capture is widespread among the scyphomedusae.

Included in

Biology Commons