How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust

Document Type

Article

Publication Title

Journal of Experimental Biology

Publication Date

12-15-2016

Abstract

Swimming animals commonly bend their bodies to generate thrust. For undulating animals such as eels and lampreys, their bodies bend in the form of waves that travel fromhead to tail. These kinematics accelerate the flow of adjacent fluids, which alters the pressure field in a manner that generates thrust. We used a comparative approach to evaluate the cause-and-effect relationships in this process by quantifying the hydrodynamic effects of body kinematics at the body-fluid interface of the lamprey, Petromyzon marinus, during steady-state swimming. We compared the kinematics and hydrodynamics of healthy control lampreys to lampreys whose spinal cord had been transected midbody, resulting in passive kinematics along the posterior half of their body. Using high-speed particle image velocimetry (PIV) and amethod for quantifying pressure fields, we detail how the active bending kinematics of the control lampreys were crucial for setting up strong negative pressure fields (relative to ambient fields) that generated highthrust regions at the bends as they traveled all along the body. The passive kinematics of the transected lamprey were only able to generate significant thrust at the tail, relying on positive pressure fields. These different pressure and thrust scenarios are due to differences in how active versus passive body waves generated and controlled vorticity. This demonstrates why it is more effective for undulating lampreys to pull, rather than push, themselves through the fluid.

Volume

219

Issue

24

First Page

3884

Last Page

3895

DOI

10.1242/jeb.144642

ISSN

00220949

Funding Sponsor

National Science Foundation

Funding Number

1510929

Share

 
COinS