How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust
Document Type
Article
Publication Title
Journal of Experimental Biology
Publication Date
12-15-2016
Abstract
Swimming animals commonly bend their bodies to generate thrust. For undulating animals such as eels and lampreys, their bodies bend in the form of waves that travel fromhead to tail. These kinematics accelerate the flow of adjacent fluids, which alters the pressure field in a manner that generates thrust. We used a comparative approach to evaluate the cause-and-effect relationships in this process by quantifying the hydrodynamic effects of body kinematics at the body-fluid interface of the lamprey, Petromyzon marinus, during steady-state swimming. We compared the kinematics and hydrodynamics of healthy control lampreys to lampreys whose spinal cord had been transected midbody, resulting in passive kinematics along the posterior half of their body. Using high-speed particle image velocimetry (PIV) and amethod for quantifying pressure fields, we detail how the active bending kinematics of the control lampreys were crucial for setting up strong negative pressure fields (relative to ambient fields) that generated highthrust regions at the bends as they traveled all along the body. The passive kinematics of the transected lamprey were only able to generate significant thrust at the tail, relying on positive pressure fields. These different pressure and thrust scenarios are due to differences in how active versus passive body waves generated and controlled vorticity. This demonstrates why it is more effective for undulating lampreys to pull, rather than push, themselves through the fluid.
Volume
219
Issue
24
First Page
3884
Last Page
3895
DOI
10.1242/jeb.144642
Recommended Citation
Gemmell, B., Fogerson, S., Costello, J., Morgan, J., Dabiri, J., & Colin, S. (2016). How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust. Journal of Experimental Biology, 219 (24), 3884-3895. https://doi.org/10.1242/jeb.144642
ISSN
00220949
Funding Sponsor
National Science Foundation
Funding Number
1510929