Document Type
Article
Publication Date
2013
Abstract
In a general sense, biodiversity is an intuitively simple concept, referring to the variety of Earth’s organisms. Ecologists, however, conceptualize biodiversity in a more nuanced, multidimensional way to reflect the enormous diversity of species, niches, and interspecific interactions that generate spatiotemporal complexity in communities. Students may not fully comprehend or appreciate this deeper meaning if they fail to recognize the full range of species in a community (e.g., the often-ignored microbes and small invertebrates) and how their varied interactions (e.g., mutualism, parasitism) and activities (e.g., ecosystem engineering) affect an ecosystem’s emergent structure (e.g., food webs) and function (e.g., decomposition). To help students learn about biodiversity and complex ecological webs, a role-playing activity was developed in which students “become” a different species (or resource) that they investigated for homework. In class, students work in small groups to “meet” other species in their community and, as appropriate for their roles, “consume” or “interact” with each other. As they make intraspecific connections, students collectively create an ecological web diagram to reveal the structure of their community’s relationships. This diagram is used for further exploration and discussion about, e.g., trophic cascades, non-trophic interactions, ecosystem engineering, and species’ effects on the movement of energy and nutrients. This inquiry-based activity has been observed to sustain student engagement and yield productive discussions and positive responses. Further, qualitative assessment indicates that students’ knowledge about biodiversity and ecological interactions improves after the activity and discussions, suggesting that students benefit from acting in and constructing their own ecological webs.
Recommended Citation
Byrne, L.B. 2013. "An in-class role-playing activity to foster discussion and deeper understanding of biodiversity and ecological webs." EcoEd Digital Library
Comments
In: EcoEd Digital Library