GENETIC ALGORITHM FOR OBSTACLE LOCATION-ALLOCATION PROBLEMS WITH CUSTOMER
Document Type
Article
Publication Title
Journal of Industrial and Management Optimization
Publication Date
7-1-2021
Abstract
In this paper we propose a metaheuristic approach to solve a customer priority based location-allocation problem in presence of obstacles and location-dependent supplier capacities. In many network optimization problems presence of obstacles prohibits feasibility of a regular network design. This includes a wide range of applications including disaster relief and pandemic disease containment problems in healthcare management. We focus on this application since fast and efficient allocation of suppliers to demand nodes is a critical process that impacts the results of the containment strategy. In this study, we propose an integrated mixed-integer program with location-based capacity decisions that considers customer priorities in the network design. We propose an efficient multi-stage genetic algorithm that solves the problem in continuous space. The computational findings show the best allocation strategies derived from proposed algorithms.
Volume
17
Issue
4
First Page
1753
Last Page
1769
DOI
10.3934/jimo.2020044
Recommended Citation
Priorities., Ayough, A., Farhadi, F., Zandieh, M., & Rastkhadiv, P. (2021). GENETIC ALGORITHM FOR OBSTACLE LOCATION-ALLOCATION PROBLEMS WITH CUSTOMER. Journal of Industrial and Management Optimization, 17 (4), 1753-1769. https://doi.org/10.3934/jimo.2020044
ISSN
15475816
E-ISSN
1553166X