Marine Submicron Aerosols from the Gulf of Mexico: Polluted and Acidic with Rapid Production of Sulfate and Organosulfates

Document Type

Article

Publication Title

Environmental Science and Technology

Publication Date

4-4-2023

Abstract

We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the “background” aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine “background” aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf “background” aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured “background” sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.

Volume

57

Issue

13

First Page

5149

Last Page

5159

DOI

10.1021/acs.est.2c05469

ISSN

0013936X

E-ISSN

15205851

Share

 
COinS